亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy modeling of system settings: A crowdsourced approach

电池(电) 计算机科学 能源消耗 能量(信号处理) 构造(python库) 实时计算 模拟 嵌入式系统 功率(物理) 可靠性工程 电气工程 工程类 统计 物理 程序设计语言 量子力学 数学
作者
Ella Peltonen,Eemil Lagerspetz,Petteri Nurmi,Sasu Tarkoma
标识
DOI:10.1109/percom.2015.7146507
摘要

The question "Where has my battery life gone?" remains a common source of frustration for many smartphone users. With the increased complexity of smartphone applications, and the increasing number of system settings affecting them, understanding and optimizing battery use has become a difficult chore. The present paper develops a novel approach for constructing energy models from crowdsourced measurements. In contrast to previous approaches, which have focused on the effect of a specific sensor, system setting or application, our approach can simultaneously capture relationships between multiple factors, and provide a unified view of the energy state of the mobile device. We demonstrate the validity of using crowdsourced measurements for constructing battery models through a combination of large-scale analysis of a dataset containing battery discharge and system state measurements and hardware power measurements. The results indicate that the models captured by our approach are both in line with previous studies on battery consumption and empirical measurements, providing a cost-effective way to construct energy models during normal operations of the device. The analysis also provides several new insights about battery consumption. For example, our analysis shows the energy use of high CPU activity with automatic screen brightness is actually higher (resulting in around 9 minutes shorter battery lifetime on average) than with a medium CPU load and manual screen brightness; a Wi-Fi signal strength drop of one bar can result in a battery life loss of over 13%; and a smartphone sitting in the sun can experience over 50% worse battery life than one indoors in cool conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
47秒前
47秒前
飞快的翼完成签到,获得积分10
56秒前
1分钟前
善学以致用应助Fangfang采纳,获得10
1分钟前
科研通AI6.1应助jy采纳,获得10
1分钟前
1分钟前
Fangfang发布了新的文献求助10
1分钟前
琅琊为刃完成签到,获得积分10
1分钟前
1分钟前
Criminology34举报哈哈哈哈求助涉嫌违规
1分钟前
orixero应助畅快甜瓜采纳,获得10
1分钟前
领导范儿应助Fangfang采纳,获得10
1分钟前
1分钟前
1分钟前
jy发布了新的文献求助10
1分钟前
1分钟前
开心完成签到 ,获得积分10
2分钟前
Criminology34举报哈哈哈哈求助涉嫌违规
2分钟前
2分钟前
2分钟前
2分钟前
畅快甜瓜发布了新的文献求助10
2分钟前
KKLUV发布了新的文献求助10
2分钟前
畅快甜瓜发布了新的文献求助10
3分钟前
3分钟前
我是老大应助jy采纳,获得10
3分钟前
3分钟前
3分钟前
jy发布了新的文献求助10
3分钟前
畅快甜瓜发布了新的文献求助30
3分钟前
3分钟前
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732270
求助须知:如何正确求助?哪些是违规求助? 5337908
关于积分的说明 15322123
捐赠科研通 4877888
什么是DOI,文献DOI怎么找? 2620743
邀请新用户注册赠送积分活动 1569962
关于科研通互助平台的介绍 1526574