VeRUS: verification of reference intervals based on the uncertainty of sampling

作者
Matthias Beck,Florian Dufey,Tatjana Ammer,André Schützenmeister,Jakob Zierk,Christopher M. Rank,Manfred Rauh
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
标识
DOI:10.1515/cclm-2025-0728
摘要

Abstract Objectives Laboratories are required to routinely verify reported reference intervals (RIs), but common verification methods like the CLSI-EP28-A3c binomial test are often impractical due to sample collection requirements. Indirect verification methods like equivalence limits (ELs) use routine data from patient care but lack systematic evaluation. This study aimed to develop and evaluate a novel indirect verification method: verification of reference intervals based on the uncertainty of sampling (VeRUS). Methods VeRUS compares the to-be-verified candidate RI to an RI estimated from local routine data. Acceptable differences are based on the sampling uncertainty intrinsic to the nonparametric method for establishing RIs with n=120 samples. The three verification methods were systematically compared with simulated test sets resembling 10 differently distributed biomarkers and a wide range of plausible candidate RIs. Results The binomial test is inherently unable to reject too wide RIs; e.g. the 99.8 %-interval, for which ELs and VeRUS showed high rejection rates (mean 89.2 %, SD 31.5 % and mean 95.8 %, SD 2.3 %, respectively). Moreover, the binomial test incorrectly accepts 29.3 % of “too narrow” 80%-intervals, whereas the false acceptance rates of ELs and VeRUS were lower (mean 21.7 %, SD 40.9 % and mean 7.2 %, SD 4.7 %, respectively). Overall, both indirect verification methods demonstrated increased statistical power, while ELs were least consistent among different biomarker distributions. Conclusions Its robust performance without the need for sample collection makes VeRUS an attractive tool for RI verification. By enabling routine verification of previously practically unverifiable RIs (e.g., in pediatrics), VeRUS may enhance clinical decision-making and improve patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宇鑫完成签到,获得积分10
1秒前
Ding-Ding完成签到,获得积分10
2秒前
倩倩完成签到 ,获得积分10
5秒前
HuanChen完成签到 ,获得积分10
7秒前
huge完成签到,获得积分20
7秒前
川藏客完成签到,获得积分10
8秒前
迅速访文完成签到,获得积分10
8秒前
青菜完成签到,获得积分10
11秒前
马麻薯完成签到,获得积分10
11秒前
小离完成签到,获得积分10
12秒前
希哩哩完成签到 ,获得积分10
13秒前
迅速大山完成签到,获得积分10
15秒前
三岁完成签到 ,获得积分10
20秒前
满意的伊完成签到,获得积分10
22秒前
喜悦蚂蚁完成签到,获得积分10
23秒前
SharonDu完成签到 ,获得积分10
23秒前
liuchang完成签到 ,获得积分10
26秒前
soda饼干完成签到 ,获得积分10
28秒前
可问春风完成签到,获得积分10
29秒前
Daybreak完成签到 ,获得积分10
35秒前
越野蟹完成签到,获得积分10
35秒前
41秒前
laber完成签到,获得积分0
42秒前
木拉发布了新的文献求助10
47秒前
雨后完成签到 ,获得积分10
47秒前
47秒前
科目三应助嘻嘻哈哈采纳,获得10
48秒前
能干靖儿应助嘻嘻哈哈采纳,获得40
48秒前
能干靖儿应助嘻嘻哈哈采纳,获得60
48秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
48秒前
能干靖儿应助嘻嘻哈哈采纳,获得70
48秒前
kyle完成签到 ,获得积分10
53秒前
三杠完成签到 ,获得积分10
56秒前
无限晓蓝完成签到 ,获得积分10
57秒前
GLv完成签到,获得积分10
57秒前
彭于晏应助边边角角落落采纳,获得10
58秒前
yinshan完成签到 ,获得积分10
59秒前
烂漫笑晴完成签到 ,获得积分10
59秒前
修仙中应助科研通管家采纳,获得10
1分钟前
修仙中应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208