Ultra performance liquid chromatography – tandem mass spectrometer method applied to the analysis of both thyroid and steroid hormones in human hair

化学 色谱法 类固醇 甲状腺激素 激素 质谱法 串联质谱法 高效液相色谱法 串联 定量分析(化学) 类固醇激素 生物化学 复合材料 材料科学
作者
Nathalie Grova,X. Wang,Emilie M. Hardy,Paul Palazzi,Caroline Chata,Brice M. R. Appenzeller
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1612: 460648-460648 被引量:18
标识
DOI:10.1016/j.chroma.2019.460648
摘要

Hair is increasingly used as a biological matrix of interest for the assessment of hormone secretion over extended periods of time. This study described the development and the validation of a sensitive UPLC-MS/MS method for simultaneous analysis of steroid and thyroid hormones in human hair. The gradient designed in this method enables to obtain a satisfactory separation of 9 hormones of interest: cortisol, cortisone, THE, THF, α-THF, triiodothyronine (T3) and thyroxine (T4), estradiol, and testosterone. Several methodological parameters of extraction (such as the used of “cut hair” versus “pulverized hair”, the extraction time, the incubation solvent purification on SPE column and hydrolysis) that may influence the determination of hormones levels in human hair, have thus been tested here. Therefore, the results obtained highlighted the necessity of using a C18 SPE purification method for the determination of both steroid and thyroid hormones in hair. This method allows reaching suitable levels of sensitivity for cortisol and cortisone since the results obtained pointed out concentration levels of cortisol in hair of volunteers similar to those observed in the literature. This method could also offer an important impact in the field of hormone analysis since it allows, for the first time, the quantification of both T3 and T4 in human hair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助旋风狗超人采纳,获得10
1秒前
努力的安子完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
浮游应助可yi采纳,获得10
5秒前
springwell完成签到,获得积分10
5秒前
Somogyis发布了新的文献求助10
6秒前
852应助zz采纳,获得10
6秒前
红红酱发布了新的文献求助10
6秒前
科研通AI6应助陈龙采纳,获得10
7秒前
嘁嘁完成签到 ,获得积分10
7秒前
8秒前
Zirong发布了新的文献求助10
8秒前
8秒前
8秒前
禾桉完成签到,获得积分10
9秒前
小俊发布了新的文献求助10
9秒前
酷炫大树发布了新的文献求助10
9秒前
10秒前
三明治完成签到,获得积分10
11秒前
chitanggo完成签到 ,获得积分10
12秒前
12秒前
12秒前
Tsin778发布了新的文献求助10
13秒前
13秒前
14秒前
嘛哩嘛哩轰完成签到,获得积分10
14秒前
tinneywu完成签到 ,获得积分10
14秒前
天天快乐应助甘宁采纳,获得10
15秒前
15秒前
15秒前
豆4799完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
YaoHui发布了新的文献求助10
16秒前
王都对发布了新的文献求助10
16秒前
xiaomeng完成签到 ,获得积分10
16秒前
16秒前
weddcf发布了新的文献求助10
18秒前
情怀应助啦啦啦啦采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091