Radiomic signature-based nomogram to predict disease-free survival in stage II and III colon cancer

列线图 医学 结直肠癌 无线电技术 逻辑回归 队列 内科学 肿瘤科 放射科 阶段(地层学) 癌症 T级 回顾性队列研究 生物 古生物学
作者
Xun Yao,Caixia Sun,Fei Xiong,Xinyu Zhang,Cheng Jin,Chao Wang,Yingjiang Ye,Nan Hong,Lihui Wang,Zhenyu Liu,Xiaochun Meng,Yi Wang,Jie Tian
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:131: 109205-109205 被引量:13
标识
DOI:10.1016/j.ejrad.2020.109205
摘要

Abstract

Purpose

To develop a radiomic nomogram to predict disease-free survival (DFS) in patients with colon cancer.

Methods

We retrospectively identified 302 patients with stage III colon cancer and 269 patients with stage II colon cancer who had undergone multidetector computed tomography (MDCT) and radical resection between January 2009 and December 2015. Patients were divided into a training cohort (n = 322) and an external validation cohort (n = 249). Radiomic features were extracted from MDCT images, and a radiomic signature was built as to predict DFS. A radiomic nomogram integrating the radiomic signature and clinicopathologic characteristics was developed using multivariable logistic regression. The nomogram was evaluated with regard to calibration, discrimination, and clinical utility.

Results

The radiomic signature was an independent prognostic factor for DFS in the training cohort (HR = 1.102; 95 % CI: 1.052–1.156; P < 0.001) and the external validation cohort (HR = 1.157; 95 % CI: 1.030–1.301; P = 0.014). The radiomic signature-based nomogram was more effective at predicting DFS than either the TNM staging system or a clinicopathologic nomogram. The C-indices of the radiomic nomogram and TNM staging system were 0.780 (95 % CI: 0.734–0.847) and 0.738 (0.687−0.784) respectively. The radiomic signature-based nomogram demonstrated good fitness (shown by calibration curves) and clinical usefulness (shown by decision curve analysis).

Conclusion

A radiomic signature derived from MDCT images can effectively predict DFS in patients with stage II and III colon cancer and could be used as a supplement for risk stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
妩媚的海应助科研通管家采纳,获得10
刚刚
灵巧的丹珍完成签到,获得积分10
刚刚
刚刚
Zx_1993应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
汉堡包应助执业匪徒采纳,获得10
刚刚
老弟需要帮助完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
lyx完成签到 ,获得积分10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
过气的蓝精灵关注了科研通微信公众号
刚刚
yznfly应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
小橙子完成签到,获得积分10
1秒前
Jiangtao应助zc采纳,获得10
1秒前
今天也要开心Y完成签到,获得积分10
1秒前
janejane发布了新的文献求助10
1秒前
1秒前
11完成签到,获得积分10
2秒前
橙汁完成签到,获得积分10
2秒前
迷路尔珍完成签到 ,获得积分10
3秒前
hht发布了新的文献求助10
3秒前
隐形的星月完成签到,获得积分20
4秒前
4秒前
英勇以筠完成签到,获得积分10
4秒前
Akim应助细心的抽屉采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924