Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI

钆酸 神经组阅片室 医学 磁共振弹性成像 放射科 肝纤维化 超声波 磁共振成像 纤维化 钆DTPA 弹性成像 内科学 神经学 精神科
作者
Stefanie J. Hectors,Paul Kennedy,Kuang-Han Huang,Daniel Stocker,Guillermo Carbonell,Hayit Greenspan,Scott L. Friedman,Bachir Taouli
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (6): 3805-3814 被引量:63
标识
DOI:10.1007/s00330-020-07475-4
摘要

To (1) develop a fully automated deep learning (DL) algorithm based on gadoxetic acid–enhanced hepatobiliary phase (HBP) MRI and (2) compare the diagnostic performance of DL vs. MR elastography (MRE) for noninvasive staging of liver fibrosis. This single-center retrospective study included 355 patients (M/F 238/117, mean age 60 years; training, n = 178; validation, n = 123; test, n = 54) who underwent gadoxetic acid–enhanced abdominal MRI, including HBP and MRE, and pathological evaluation of the liver within 1 year of MRI. Cropped liver HBP images from a custom-written fully automated liver segmentation were used as input for DL. A transfer learning approach based on the ImageNet VGG16 model was used. Different DL models were built for the prediction of fibrosis stages F1-4, F2-4, F3-4, and F4. ROC analysis was performed to evaluate the performance of DL in training, validation, and test sets and of MRE liver stiffness in the test set. AUC values of DL were 0.99/0.70/0.77 (F1-4), 0.92/0.71/0.91 (F2-4), 0.91/0.78/0.90 (F3-4), and 0.98/0.83/0.85 (F4) for training/validation/test sets, respectively. The AUCs of MRE liver stiffness in the test set were 0.86 (F1-4), 0.87 (F2-4), 0.92 (F3-4), and 0.86 (F4). AUCs of MRE and DL were not significantly different for any of the fibrosis stages (p > 0.134). The fully automated DL models based on HBP gadoxetic acid MRI showed good-to-excellent diagnostic performance for staging of liver fibrosis, with similar diagnostic performance to MRE. After validation in independent sets, the DL algorithm may allow for noninvasive liver fibrosis assessment without the need for additional MRI hardware. • The developed deep learning algorithm, based on routine standard-of-care gadoxetic acid–enhanced MRI data, showed good-to-excellent diagnostic performance for noninvasive staging of liver fibrosis. • The diagnostic performance of the deep learning algorithm was equivalent to that of MR elastography in a separate test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mariawang发布了新的文献求助10
2秒前
浮世一梦发布了新的文献求助10
2秒前
在水一方应助害羞的芝麻采纳,获得10
2秒前
beninsect完成签到,获得积分10
3秒前
lyh发布了新的文献求助10
3秒前
huang发布了新的文献求助10
3秒前
古术新知发布了新的文献求助10
4秒前
彭于晏应助阡瓴采纳,获得10
4秒前
江胜虎完成签到,获得积分10
4秒前
Linn发布了新的文献求助10
5秒前
斯文败类应助DDDuan采纳,获得10
6秒前
7秒前
7秒前
丘比特应助Carsik采纳,获得100
7秒前
Akim应助读书的时候采纳,获得10
7秒前
Orange应助mariawang采纳,获得10
8秒前
PuChaokai发布了新的文献求助10
8秒前
皮小盒完成签到,获得积分10
8秒前
爱书儿的小周完成签到,获得积分10
9秒前
科目三应助鲜艳的靖雁采纳,获得10
9秒前
梁sir发布了新的文献求助10
9秒前
井子肉发布了新的文献求助10
11秒前
CodeCraft应助吧拉芭芭拉采纳,获得10
12秒前
周梦晴发布了新的文献求助10
13秒前
13秒前
frank完成签到,获得积分10
14秒前
15秒前
19秒前
19秒前
19秒前
20秒前
国际戏骨完成签到,获得积分10
21秒前
向阳发布了新的文献求助10
21秒前
21秒前
研友_VZG7GZ应助南风吹梦采纳,获得10
23秒前
国际戏骨发布了新的文献求助10
24秒前
冷傲含海发布了新的文献求助10
24秒前
ll发布了新的文献求助10
25秒前
Sslya完成签到,获得积分10
25秒前
我是老大应助读书的时候采纳,获得10
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097872
求助须知:如何正确求助?哪些是违规求助? 3635616
关于积分的说明 11523795
捐赠科研通 3345719
什么是DOI,文献DOI怎么找? 1838925
邀请新用户注册赠送积分活动 906425
科研通“疑难数据库(出版商)”最低求助积分说明 823634