清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them

不完美的 算法 计算机科学 偏爱 结果(博弈论) 控制(管理) 机器学习 人工智能 经济 微观经济学 哲学 语言学
作者
Berkeley J. Dietvorst,Joseph P. Simmons,Cade Massey
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:64 (3): 1155-1170 被引量:798
标识
DOI:10.1287/mnsc.2016.2643
摘要

Although evidence-based algorithms consistently outperform human forecasters, people often fail to use them after learning that they are imperfect, a phenomenon known as algorithm aversion. In this paper, we present three studies investigating how to reduce algorithm aversion. In incentivized forecasting tasks, participants chose between using their own forecasts or those of an algorithm that was built by experts. Participants were considerably more likely to choose to use an imperfect algorithm when they could modify its forecasts, and they performed better as a result. Notably, the preference for modifiable algorithms held even when participants were severely restricted in the modifications they could make (Studies 1–3). In fact, our results suggest that participants’ preference for modifiable algorithms was indicative of a desire for some control over the forecasting outcome, and not for a desire for greater control over the forecasting outcome, as participants’ preference for modifiable algorithms was relatively insensitive to the magnitude of the modifications they were able to make (Study 2). Additionally, we found that giving participants the freedom to modify an imperfect algorithm made them feel more satisfied with the forecasting process, more likely to believe that the algorithm was superior, and more likely to choose to use an algorithm to make subsequent forecasts (Study 3). This research suggests that one can reduce algorithm aversion by giving people some control—even a slight amount—over an imperfect algorithm’s forecast. Data, as supplemental material, are available at https://doi.org/10.1287/mnsc.2016.2643 . This paper was accepted by Yuval Rottenstreich, judgment and decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tutu发布了新的文献求助30
6秒前
上官若男应助科研通管家采纳,获得10
45秒前
58秒前
lyj完成签到 ,获得积分10
1分钟前
珍珠火龙果完成签到 ,获得积分10
1分钟前
蜜桃小丸子完成签到 ,获得积分10
1分钟前
haralee完成签到 ,获得积分10
1分钟前
如歌完成签到,获得积分10
1分钟前
认真的冬易完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
阿巴阿巴茶完成签到,获得积分20
3分钟前
英俊的铭应助tutu采纳,获得30
4分钟前
nenoaowu应助tutu采纳,获得30
4分钟前
slayers发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
鬼见愁应助tutu采纳,获得10
5分钟前
5分钟前
even完成签到 ,获得积分10
5分钟前
5分钟前
tutu发布了新的文献求助30
5分钟前
6分钟前
6分钟前
wwe完成签到,获得积分10
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
隐形静芙完成签到 ,获得积分10
6分钟前
7分钟前
午后狂睡完成签到 ,获得积分10
7分钟前
里工完成签到 ,获得积分10
7分钟前
mathmotive完成签到,获得积分10
7分钟前
7分钟前
8分钟前
昌莆完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
10分钟前
牛八先生完成签到,获得积分10
10分钟前
gyx完成签到 ,获得积分10
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4184607
求助须知:如何正确求助?哪些是违规求助? 3720260
关于积分的说明 11723712
捐赠科研通 3398899
什么是DOI,文献DOI怎么找? 1864956
邀请新用户注册赠送积分活动 922482
科研通“疑难数据库(出版商)”最低求助积分说明 834058