Prediction of Abdominal Aortic Aneurysm Growth Using Geometric Assessment of Computerized Tomography Images Acquired During the Aneurysm Surveillance Period

医学 动脉瘤 接收机工作特性 放射科 逻辑回归 腹主动脉瘤 核医学 内科学
作者
Anirudh Chandrashekar,Ashok Handa,Pierfrancesco Lapolla,Natesh Shivakumar,Elisha Ngetich,Vicente Grau,Regent Lee
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:277 (1): e175-e183 被引量:24
标识
DOI:10.1097/sla.0000000000004711
摘要

Objective: We investigated the utility of geometric features for future AAA growth prediction. Background: Novel methods for growth prediction of AAA are recognized as a research priority. Geometric feature have been used to predict cerebral aneurysm rupture, but not examined as predictor of AAA growth. Methods: Computerized tomography (CT) scans from patients with infra-renal AAAs were analyzed. Aortic volumes were segmented using an automated pipeline to extract AAA diameter (APD), undulation index (UI), and radius of curvature (RC). Using a prospectively recruited cohort, we first examined the relation between these geometric measurements to patients' demographic features (n = 102). A separate 192 AAA patients with serial CT scans during AAA surveillance were identified from an ongoing clinical database. Multinomial logistic and multiple linear regression models were trained and optimized to predict future AAA growth in these patients. Results: There was no correlation between the geometric measurements and patients' demographic features. APD (Spearman r = 0.25, P < 0.05), UI (Spearman r = 0.38, P < 0.001) and RC (Spearman r =–0.53, P < 0.001) significantly correlated with annual AAA growth. Using APD, UI, and RC as 3 input variables, the area under receiver operating characteristics curve for predicting slow growth (<2.5 mm/yr) or fast growth (>5 mm/yr) at 12 months are 0.80 and 0.79, respectively. The prediction or growth rate is within 2 mm error in 87% of cases. Conclusions: Geometric features of an AAA can predict its future growth. This method can be applied to routine clinical CT scans acquired from patients during their AAA surveillance pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李李发布了新的文献求助10
1秒前
程院发布了新的文献求助10
1秒前
科研通AI5应助砂砾采纳,获得10
2秒前
M1完成签到,获得积分10
3秒前
阳光森林完成签到 ,获得积分10
3秒前
3秒前
田様应助xxp采纳,获得10
5秒前
量子星尘发布了新的文献求助30
5秒前
ZLWF发布了新的文献求助10
6秒前
英姑应助程院采纳,获得10
8秒前
10秒前
VAE发布了新的文献求助200
10秒前
koi发布了新的文献求助10
14秒前
....完成签到,获得积分20
14秒前
观妙散人完成签到,获得积分10
16秒前
hyx7735完成签到,获得积分10
16秒前
砂砾完成签到,获得积分10
17秒前
MG完成签到 ,获得积分10
18秒前
hyx7735发布了新的文献求助10
19秒前
憨憨兔子完成签到,获得积分10
20秒前
Owen应助lucy采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
慕青应助博修采纳,获得10
22秒前
VAE完成签到,获得积分10
24秒前
ZIS完成签到,获得积分10
24秒前
李健的小迷弟应助余潇潇采纳,获得10
24秒前
自然的剑封完成签到,获得积分10
27秒前
maz123456完成签到,获得积分10
27秒前
七塔蹦完成签到,获得积分10
27秒前
bobo完成签到 ,获得积分10
28秒前
daheeeee完成签到,获得积分10
28秒前
刘钊扬完成签到,获得积分10
29秒前
不配.应助勤奋的如松采纳,获得20
32秒前
盐冰完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
37秒前
123完成签到 ,获得积分10
37秒前
40秒前
demoestar完成签到 ,获得积分10
41秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212780
求助须知:如何正确求助?哪些是违规求助? 3747005
关于积分的说明 11789485
捐赠科研通 3414563
什么是DOI,文献DOI怎么找? 1873739
邀请新用户注册赠送积分活动 928108
科研通“疑难数据库(出版商)”最低求助积分说明 837442