Probabilistic neural network tomography across Grane field (North Sea) from surface wave dispersion data

色散(光学) 反演(地质) 计算机科学 克里金
作者
Stephanie Earp,Andrew Curtis,Xin Zhang,F. Hansteen
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:223 (3): 1741-1757 被引量:9
标识
DOI:10.1093/gji/ggaa328
摘要

Surface wave tomography uses measured dispersion properties of surface waves to infer the spatial distribution of subsurface properties such as shear-wave velocities. These properties can be estimated vertically below any geographical location at which surface wave dispersion data are available. As the inversion is significantly non-linear, Monte Carlo methods are often used to invert dispersion curves for shear-wave velocity profiles with depth to give a probabilistic solution. Such methods provide uncertainty information but are computationally expensive. Neural network based inversion provides a more efficient way to obtain probabilistic solutions when those solutions are required beneath many geographical locations. Unlike Monte Carlo methods, once a network has been trained it can be applied rapidly to perform any number of inversions. We train a class of neural networks called mixture density networks, to invert dispersion curves for shear-wave velocity models and their non-linearised uncertainty. Mixture density networks are able to produce fully probabilistic solutions in the form of weighted sums of multivariate analytic kernels such as Gaussians, and we show that including data uncertainties in the mixture density network gives more reliable mean velocity estimates when data contains significant noise. The networks were applied to data from the Grane field in the Norwegian North sea to produce shear-wave velocity maps at several depth levels. Post-training we obtained probabilistic velocity profiles with depth beneath 26,772 locations to produce a 3D velocity model in 21 seconds on a standard desktop computer. This method is therefore ideally suited for rapid, repeated 3D subsurface imaging and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大知闲闲完成签到 ,获得积分10
刚刚
GXLong完成签到,获得积分10
3秒前
6秒前
一点完成签到,获得积分10
6秒前
7秒前
k13524完成签到,获得积分10
7秒前
恒河鲤完成签到,获得积分10
10秒前
11秒前
影子完成签到,获得积分20
13秒前
调皮从云发布了新的文献求助10
15秒前
刘十三完成签到,获得积分10
16秒前
rw完成签到,获得积分10
17秒前
小贾baby完成签到,获得积分10
18秒前
19秒前
23秒前
25秒前
25秒前
26秒前
gy发布了新的文献求助10
28秒前
可爱败发布了新的文献求助10
29秒前
房天川完成签到 ,获得积分0
29秒前
Shuey完成签到,获得积分10
31秒前
Lea发布了新的文献求助10
31秒前
雪白的面包完成签到 ,获得积分10
34秒前
yoyocici1505完成签到,获得积分10
36秒前
飞哥完成签到 ,获得积分10
36秒前
mighu完成签到,获得积分10
37秒前
haoliu完成签到 ,获得积分10
38秒前
39秒前
虚幻沛文完成签到 ,获得积分10
39秒前
Summer发布了新的文献求助60
39秒前
Pytong完成签到,获得积分10
39秒前
One完成签到 ,获得积分10
40秒前
QLLW完成签到,获得积分10
40秒前
寒冷丹雪完成签到,获得积分10
44秒前
gy完成签到,获得积分10
46秒前
lucky完成签到 ,获得积分10
46秒前
47秒前
47秒前
华仔应助光亮笑柳采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522