Application of deep learning in aquatic bioassessment: Towards automated identification of non-biting midges

摇蚊科 鉴定(生物学) 卷积神经网络 人工智能 生物监测 亚科 人工神经网络 计算机科学 过程(计算) 模式识别(心理学) 生态学 机器学习 生物 基因 操作系统 生物化学 幼虫
作者
Djuradj Milošević,Aleksandar Milosavljević,Bratislav Predić,Andrew S. Medeiros,Dimitrija Savić‐Zdravković,Milica Stojković Piperac,Tijana Kostić,Filip Spasić,Florian Leese
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:711: 135160-135160 被引量:40
标识
DOI:10.1016/j.scitotenv.2019.135160
摘要

Morphological species identification is often a difficult, expensive, and time-consuming process which hinders the ability for reliable biomonitoring of aquatic ecosystems. An alternative approach is to automate the whole process, accelerating the identification process. Here, we demonstrate an automatic machine-based identification approach for non-biting midges (Diptera: Chironomidae) using Convolutional Neural Networks (CNNs) as a means of increasing taxonomic resolution of biomonitoring data at a minimal cost. Chironomidae were used to build the automatic identifier, as a family of insects that are abundant and ecologically important, yet difficult and time-consuming to accurately identify. The approach was tested with 10 morphologically very similar species from the same genus or subfamilies, comprising 1846 specimens from the South Morava river basin, Serbia. Three CNN models were built utilizing either species, genus, or subfamily data. After training the artificial neural network, images that the network had not seen during the training phase achieved an accuracy of 99.5% for species-level identification, while at the genus and subfamily level all images were correctly assigned (100% accuracy). Gradient-weighted Class Activation Mapping (Grad-CAM) visualized the mentum, ventromental plates, mandibles, submentum, and postoccipital margin to be morphologically important features for CNN classification. Thus, the CNN approach was a highly accurate solution for chironomid identification of aquatic macroinvertebrates opening a new avenue for implementation of artificial intelligence and deep learning methodology in the biomonitoring world. This approach also provides a means to overcome the gap in bioassessment for developing countries where widespread use techniques for routine monitoring are currently limited.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
牧鱼发布了新的文献求助10
4秒前
4秒前
包谷冬完成签到 ,获得积分0
5秒前
欣新发布了新的文献求助10
5秒前
好嘟完成签到,获得积分20
6秒前
小蘑菇应助无风采纳,获得10
6秒前
qinqin发布了新的文献求助10
7秒前
yk123发布了新的文献求助10
7秒前
8秒前
zz完成签到,获得积分10
9秒前
欣新完成签到,获得积分10
10秒前
晨曦完成签到 ,获得积分10
12秒前
orixero应助君君采纳,获得10
12秒前
yk123完成签到,获得积分10
13秒前
郭郭郭发布了新的文献求助10
13秒前
14秒前
万能图书馆应助核桃酥采纳,获得10
14秒前
16秒前
爆米花应助想不想采纳,获得10
16秒前
xibaluma发布了新的文献求助10
16秒前
19秒前
安详凡发布了新的文献求助10
19秒前
赵一丁完成签到,获得积分10
19秒前
19秒前
平淡夜绿发布了新的文献求助10
23秒前
烟花应助你听风在吹采纳,获得10
24秒前
26秒前
26秒前
26秒前
牧鱼完成签到,获得积分10
27秒前
27秒前
29秒前
无风发布了新的文献求助10
30秒前
暖暖发布了新的文献求助10
31秒前
wangayting发布了新的文献求助10
32秒前
32秒前
左丘映易完成签到,获得积分0
34秒前
核桃酥发布了新的文献求助10
34秒前
xiao_niu完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792