Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: A multicenter study

医学 无线电技术 预测值 多中心研究 价值(数学) 内科学 人工智能 机器学习 计算机科学 随机对照试验
作者
Xiangjun Wu,Di Dong,Lu Zhang,Mengjie Fang,Yongbei Zhu,Bingxi He,Zhaoxiang Ye,Minming Zhang,Shuixing Zhang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:48 (5): 2374-2385 被引量:35
标识
DOI:10.1002/mp.14767
摘要

The present study assessed the predictive value of peritumoral regions on three tumor tasks, and further explored the influence of peritumors with different sizes.We retrospectively collected 333 samples of gastrointestinal stromal tumors from the Second Affiliated Hospital of Zhejiang University School of Medicine, and 183 samples of gastrointestinal stromal tumors from Tianjin Medical University Cancer Hospital. We also collected 211 samples of laryngeal carcinoma and 233 samples of nasopharyngeal carcinoma from the First Affiliated Hospital of Jinan University. The tasks of three tumor datasets were risk assessment (gastrointestinal stromal tumor), T3/T4 staging prediction (laryngeal carcinoma), and distant metastasis prediction (nasopharyngeal carcinoma), respectively. First, deep learning and radiomics were respectively used to construct peritumoral models, to study whether the peritumor had predictive value on three tumor datasets. Furthermore, we defined different sizes peritumors including fixed size (not considering tumor size) and adaptive size (according to average tumor radius) to explore the influence of peritumor of different sizes and types of tumors. Finally, we visualized the deep learning and radiomic models to observe the influence of the peritumor in three datasets.The performance of intra-peritumors are better than intratumors alone in three datasets. Specifically, the comparisons of area under receiver operating characteristic curve in the testing set between intra-peritumoral and intratumoral models are: 0.908 vs 0.873 (P value: 0.037) in gastrointestinal stromal tumor datasets, 0.796 vs 0.756 (P value: 0.188) in laryngeal carcinoma datasets and 0.660 vs 0.579 (P value: 0.431) in nasopharyngeal carcinoma datasets. Furthermore, for gastrointestinal stromal tumor datasets, deep learning is more stable to learn peritumors with both fixed and adaptive size than radiomics. For laryngeal carcinoma datasets, the intra-peritumoral radiomic model could make model performance more balanced. For nasopharyngeal carcinoma datasets, radiomics is also more suitable for modeling peritumors than deep learning. The size of the peritumor is critical in this task, and only the performance of 1.5 mm-4.5 mm peritumors is stable.Our results indicate that peritumors have additional predictive value in three tumor datasets through deep learning or radiomics. The definitions of the peritumoral region and artificial intelligence method also have great influence on the performance of the peritumor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiejie发布了新的文献求助10
刚刚
1秒前
1秒前
刘娟发布了新的文献求助10
1秒前
2秒前
搜集达人应助yes采纳,获得10
2秒前
英姑应助kris采纳,获得10
2秒前
F-cp完成签到,获得积分10
2秒前
李健应助Sonny采纳,获得10
3秒前
Jasper应助闪闪落雁采纳,获得10
3秒前
3秒前
3秒前
liuyingke完成签到,获得积分10
3秒前
xx关闭了xx文献求助
4秒前
甜美浩然完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
淡淡绮琴发布了新的文献求助10
5秒前
sherdrt发布了新的文献求助10
5秒前
大强发布了新的文献求助10
6秒前
euy发布了新的文献求助10
6秒前
6秒前
7秒前
Xantareas发布了新的文献求助10
8秒前
甜美浩然发布了新的文献求助10
8秒前
8秒前
M鹿M完成签到 ,获得积分10
8秒前
8秒前
8秒前
对方正在讲话完成签到,获得积分10
8秒前
寻梦少年完成签到,获得积分20
9秒前
怡然冰之完成签到,获得积分10
10秒前
圆滚滚完成签到,获得积分10
10秒前
整齐的惮完成签到 ,获得积分10
10秒前
Inevitable完成签到,获得积分10
11秒前
11秒前
眼睛大的仰完成签到,获得积分10
11秒前
11秒前
顾矜应助小郭采纳,获得10
11秒前
guoyanna发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072099
求助须知:如何正确求助?哪些是违规求助? 4292584
关于积分的说明 13375086
捐赠科研通 4113598
什么是DOI,文献DOI怎么找? 2252529
邀请新用户注册赠送积分活动 1257381
关于科研通互助平台的介绍 1190193