An efficient screening method for retired lithium-ion batteries based on support vector machine

支持向量机 重新使用 电池(电) 一致性(知识库) 电池组 内阻 锂离子电池 锂(药物) 计算机科学 汽车工程 工程类 人工智能 医学 功率(物理) 废物管理 物理 量子力学 内分泌学
作者
Zhongkai Zhou,Bin Duan,Yongzhe Kang,Yunlong Shang,Naxin Cui,Long Chang,Chenghui Zhang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:267: 121882-121882 被引量:98
标识
DOI:10.1016/j.jclepro.2020.121882
摘要

As a large number of lithium-ion batteries are retired from electric vehicles, their reuse is receiving more and more attention. However, a retired battery pack is not suitable for direct reuse due to the poor consistency of in-pack cells. In this paper, we propose an efficient screening method for retired cells based on support vector machine. Firstly, twelve retired LiFePO4 battery modules are dissembled into 240 cells, and their capacity and resistance are measured and analyzed. Secondly, to improve screening efficiency for retired cells, an incremental capacity curve based on high charging current rate is used to rapidly extract their capacity feature and internal resistance. Subsequently, the multi-class model based on support vector machine is trained to classify the retired cells with good consistency. Finally, the retired cells are accurately divided into four classes by the trained model, and the classification accuracy can reach 96.8%. Compared with the traditional method, the time of feature extraction can be reduced by four fifths, and the screening efficiency is greatly improved. Additionally, a current test system is designed to compare the current differences in the new battery module regrouped in parallel by the screened cells. The experimental results show the current consistency is significantly improved compared to that in the original battery module, and the mean of standard deviation used to describe the current inconsistency drops by up to about 14 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
luen完成签到,获得积分10
1秒前
fenghao发布了新的文献求助10
2秒前
3秒前
科目三应助jianwuzhou采纳,获得10
3秒前
4秒前
7秒前
XRQ完成签到,获得积分10
8秒前
三愿完成签到 ,获得积分10
11秒前
小李发布了新的文献求助10
12秒前
yuyuanwen发布了新的文献求助10
12秒前
xuansouxiu完成签到,获得积分10
12秒前
David完成签到 ,获得积分10
13秒前
Yun发布了新的文献求助30
14秒前
hvtu完成签到 ,获得积分10
14秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
fenghao完成签到,获得积分10
16秒前
酬勤完成签到,获得积分10
18秒前
18秒前
WJane完成签到,获得积分10
22秒前
今后应助煮饭吃Zz采纳,获得10
22秒前
梦比优斯发布了新的文献求助10
23秒前
23秒前
芥末奶半糖加冰完成签到,获得积分10
25秒前
老小孩完成签到 ,获得积分10
25秒前
AUGS酒完成签到,获得积分10
28秒前
28秒前
30秒前
30秒前
执名之念发布了新的文献求助20
32秒前
32秒前
想毕业的王桑~完成签到 ,获得积分10
32秒前
岳阳张震岳完成签到,获得积分10
32秒前
33秒前
34秒前
煮饭吃Zz发布了新的文献求助10
35秒前
VVZD发布了新的文献求助10
36秒前
示羊完成签到,获得积分10
37秒前
Hello应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600606
求助须知:如何正确求助?哪些是违规求助? 4686243
关于积分的说明 14842399
捐赠科研通 4677148
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471201