Machine Learning to Predict ICU Admission, ICU Mortality and Survivors’ Length of Stay Among COVID-19 Patients: Toward Optimal Allocation of ICU Resources

2019年冠状病毒病(COVID-19) 急诊医学 医学 重症监护室 重症监护医学 内科学 传染病(医学专业) 疾病
作者
Tingting Dan,Li Yang,Ziwei Zhu,Xijie Chen,Wuxiu Quan,Yu Hu,Guihua Tao,Lei Zhu,Jijin Zhu,Yuyan Jin,Longgeng Li,Chaokai Liang,Hanchun Wen,Hongmin Cai,Yangming Ou
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:7
标识
DOI:10.2139/ssrn.3631305
摘要

Background: Coronavirus Disease (COVID-19) causes burdens to the intensive care unit (ICU). Evidence-based planning and optimal allocation of the scarce ICU resources is urgently needed but remains unaddressed. Methods: Retrospective data from 733 in-patients with laboratory-confirmed COVD-19 in Wuhan, China, as of March 18, 2020. Demographic, clinical course and laboratory were collected and analyzed using machine learning and Least Absolute Shrinkage and Selection Operator (LASSO) to build the predictive models. Findings: First, a predictive model using an ensemble learning strategy and classifier voting mechanism was built to identify the ICU admission based on ten factors identified in 909 potential predictors. It yielded a sensitivity of 0.86 and specificity of 0.82. Second, a model built on ten significant variables predicted whether patients would die despite entering the ICU with accuracy and AUC of 92% and 98% using 3-fold cross-validation. Third, a sparse regression model was built to estimate the length of stay in ICU. It yielded that the average difference between the predicted and empirical time is less than one day. Lymphocyte absolute value appeared in all prediction tasks, thus it was a very noteworthy factor. Interpretation: We identified variables and tested the accuracy to predict the need for ICU admission, death despite ICU admission, and among survivors, length of ICU stay, before patients were admitted to ICU. Our predictions provided quantitative and objective evidence for the optimal planning and allocation of ICU resources. We revealed the most predictive variables to assist clinical workflow.Funding Statement: This work was supported by the grant from the National Natural Science Foundation of China (no.61771007).Declaration of Interests: All authors declare no competing interests.Ethics Approval Statement: This study was approved by the First Affiliated Hospital of Guangxi Medical University Hospital Ethics Committee, with the informed consent being waived.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安思柔完成签到,获得积分20
4秒前
CCsouljump完成签到 ,获得积分10
4秒前
kangkang完成签到 ,获得积分10
5秒前
彩虹大侠发布了新的文献求助10
6秒前
8秒前
FightPeng发布了新的文献求助30
11秒前
冬天里的那把火完成签到,获得积分10
13秒前
橙汁完成签到,获得积分10
13秒前
浮游应助冷傲迎梦采纳,获得10
14秒前
f1sh给王梓晴的求助进行了留言
17秒前
润泉应助mostspecial采纳,获得50
18秒前
小王完成签到 ,获得积分20
18秒前
Orange应助无语的鱼采纳,获得10
19秒前
顺利面包发布了新的文献求助10
21秒前
21秒前
老阎应助归海浩阑采纳,获得20
23秒前
eric888应助褚南风采纳,获得100
23秒前
25秒前
赫若魔应助梦锂铧采纳,获得10
25秒前
Jing完成签到 ,获得积分10
26秒前
bubble完成签到,获得积分10
26秒前
NMR发布了新的文献求助10
26秒前
29秒前
31秒前
三岁半完成签到 ,获得积分10
31秒前
31秒前
zrrr完成签到 ,获得积分10
32秒前
LCB发布了新的文献求助10
32秒前
核桃应助火星上念梦采纳,获得10
32秒前
科研通AI6应助火星上念梦采纳,获得10
32秒前
彩虹大侠完成签到,获得积分10
32秒前
天天快乐应助魏佳奇采纳,获得20
32秒前
Summer完成签到 ,获得积分10
34秒前
35秒前
周明明发布了新的文献求助10
37秒前
五百完成签到 ,获得积分10
37秒前
38秒前
39秒前
41秒前
Lucas应助温暖盼易采纳,获得30
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805130
求助须知:如何正确求助?哪些是违规求助? 4121253
关于积分的说明 12751345
捐赠科研通 3854664
什么是DOI,文献DOI怎么找? 2122701
邀请新用户注册赠送积分活动 1144903
关于科研通互助平台的介绍 1036172