Cross-Modal Retrieval between 13C NMR Spectra and Structures for Compound Identification Using Deep Contrastive Learning

化学 碳-13核磁共振 核磁共振谱数据库 鉴定(生物学) 谱线 人工智能 计算机科学 立体化学 物理 天文 植物 生物
作者
Zhuo Yang,Jianfei Song,Minjian Yang,Lin Yao,Jiahua Zhang,Hui Shi,Xiangyang Ji,Yafeng Deng,Xiaojian Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (50): 16947-16955 被引量:27
标识
DOI:10.1021/acs.analchem.1c04307
摘要

Library matching using carbon-13 nuclear magnetic resonance (13C NMR) spectra has been a popular method adopted in compound identification systems. However, the usability of existing approaches has been restricted as enlarging a library containing both a chemical structure and spectrum is a costly and time-consuming process. Therefore, we propose a fundamentally different, novel approach to match 13C NMR spectra directly against a molecular structure library. We develop a cross-modal retrieval between spectrum and structure (CReSS) system using deep contrastive learning, which allows us to search a molecular structure library using the 13C NMR spectrum of a compound. In the test of searching 41,494 13C NMR spectra against a reference structure library containing 10.4 million compounds, CReSS reached a recall@10 accuracy of 91.64% and a processing speed of 0.114 s per query spectrum. When further incorporating a filter with a molecular weight tolerance of 5 Da, CReSS achieved a new remarkable recall@10 of 98.39%. Furthermore, CReSS has potential in detecting scaffolds of novel structures and demonstrates great performance for the task of structural revision. CReSS is built and developed to bridge the gap between 13C NMR spectra and structures and could be generally applicable in compound identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
wanglixiang完成签到 ,获得积分10
2秒前
七七四十九完成签到,获得积分10
2秒前
3秒前
Michael发布了新的文献求助10
3秒前
hu发布了新的文献求助10
3秒前
小云吞关注了科研通微信公众号
5秒前
yznfly举报量子星尘求助涉嫌违规
5秒前
脑洞疼应助诚心的梅采纳,获得10
7秒前
奋斗的曼容完成签到,获得积分10
8秒前
星陨完成签到,获得积分10
8秒前
9秒前
Michael完成签到,获得积分20
9秒前
10秒前
yznfly举报舒适访云求助涉嫌违规
10秒前
飞飞飞完成签到,获得积分10
12秒前
小猴儿完成签到,获得积分10
12秒前
Lucas应助有魅力的彩虹采纳,获得10
13秒前
Linden_bd完成签到 ,获得积分10
13秒前
啊呀呀发布了新的文献求助10
14秒前
14秒前
14秒前
单复天发布了新的文献求助10
14秒前
liuy@完成签到,获得积分20
14秒前
wanci应助飞飞飞采纳,获得10
15秒前
16秒前
百里伟祺完成签到 ,获得积分10
17秒前
17秒前
17秒前
鲤鱼致远完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
JXY发布了新的文献求助10
18秒前
万能图书馆应助momo采纳,获得10
19秒前
19秒前
旺仔狗狗完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5798422
求助须知:如何正确求助?哪些是违规求助? 5792124
关于积分的说明 15497199
捐赠科研通 4925141
什么是DOI,文献DOI怎么找? 2651255
邀请新用户注册赠送积分活动 1598391
关于科研通互助平台的介绍 1553295