Theoretical Insights into Superior Nitrate Reduction to Ammonia Performance of Copper Catalysts

化学 催化作用 氨生产 无机化学 吸附 反应速率 金属 物理化学 有机化学
作者
Tao Hu,Changhong Wang,Mengting Wang,Chang Ming Li,Chunxian Guo
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (23): 14417-14427 被引量:270
标识
DOI:10.1021/acscatal.1c03666
摘要

Nitrate reduction to ammonia (NRA) is critical and attractive for environmental remediation and energy conservation. Copper represents one of the most promising non-noble-metal NRA electrocatalysts while its intrinsic catalytic activity of facets and pH influence remain unclear. Using density functional theory calculations, nitrate reduction to ammonia pathways are evaluated on low-index crystal surfaces, Cu(111), Cu(100), and Cu(110), at different pH. Systematic thermodynamic and kinetic analysis indicates that the pathway NO3– → *NO3 → *NO2 → *NO → *NOH → *NHOH → *NH → *NH2 → *NH3 → NH3(g) is the most probable in all pH ranges, ending a long-standing debate on NRA pathways. Both the catalytic deoxygenation and hydrogenation processes in NRA are substantially affected by pH. Thus, the rate-determining steps and overpotentials exhibit pH-dependent characteristics. Besides, it is found that the pH influences the competition between the hydrogen evolution reaction (HER) and NRA. By considering NRA and HER on different surfaces, we found that Cu(100) and Cu(111) contribute most to NRA other than Cu(110). Specifically, in near-neutral and alkaline environments, Cu(111) exhibits the best NO3– to NH3 performance, while Cu(100) is more effective in a strong acidic environment. This result rationalizes recent experimental observations. The NRA activity differences of copper surfaces are attributed to the local coordination environment and electronic states of surface atoms. Thanks to a stereospecific Cu–Cu couple, both strong *NOH adsorption and weak *NH3 adsorption are realized on Cu(111) and Cu(100), facilitating superior NRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助李大宝采纳,获得10
1秒前
1秒前
慕青应助zhao采纳,获得10
2秒前
sky完成签到,获得积分10
4秒前
也许。。。完成签到,获得积分10
4秒前
青行发布了新的文献求助10
5秒前
6秒前
脑洞疼应助嘎嘎嘎采纳,获得30
8秒前
haha发布了新的文献求助10
9秒前
9秒前
banfen完成签到,获得积分10
11秒前
qhling发布了新的文献求助10
12秒前
汉堡包应助裘青易采纳,获得10
12秒前
13秒前
magiczhu完成签到,获得积分10
14秒前
雪山飞鹰发布了新的文献求助10
16秒前
17秒前
斯文败类应助健忘的幻儿采纳,获得10
24秒前
今晚吃小孩完成签到,获得积分10
24秒前
雪山飞鹰完成签到,获得积分10
26秒前
26秒前
科研小民工应助wjwless采纳,获得50
26秒前
文天发布了新的文献求助10
30秒前
李爱国应助Singularity采纳,获得10
31秒前
32秒前
32秒前
36秒前
36秒前
在水一方应助DrTang采纳,获得10
36秒前
Emma完成签到 ,获得积分10
40秒前
42秒前
刘天鹏发布了新的文献求助80
42秒前
文右三发布了新的文献求助10
47秒前
47秒前
完美世界应助俏皮的一德采纳,获得10
48秒前
终将散落凡尘应助旧梦采纳,获得10
48秒前
虚幻平露完成签到,获得积分20
49秒前
50秒前
DrTang发布了新的文献求助10
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782342
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233274
捐赠科研通 3042733
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876