A hybrid machine learning approach for hypertension risk prediction

医学 计算机科学 人工智能 疾病 召回率 内科学 心脏病学
作者
Min Fang,Ying-Ru Chen,Rui Xue,Huihui Wang,Nilesh Chakraborty,Ting Su,Yuyan Dai
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:35 (20): 14487-14497 被引量:40
标识
DOI:10.1007/s00521-021-06060-0
摘要

Hypertension is a primary or contributing cause for premature death in the entire world. As a matter of fact, there is a high prevalence and low control rates in low- and middle-income countries, such that the prevention and treatment of hypertension should remain a top priority in global health. In the recent years, the awareness, treatment, and control rates of hypertension patients in China have been significantly improved to 51.6%, 45.8%, and 16.8%, respectively. However, those rates are still far from a satisfactory level. Clinical studies suggest that for people in the pre-clinical stage of hypertension or having the risk of hypertension, the progression of the disease may be significanly reduced through a change in lifestyle, or by an effective drug therapy. In this paper, we address risk prediction for hypertension in the next five years, and put forward a model merging KNN and LightGBM. Our approach allows us to predict the hypertension risk for a specific individual using features such as the age of the subject and blood indicators. Results shows that our model is reliable and achieves accuracy and recall rate over 86% and 92%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助巫马寒梅采纳,获得10
刚刚
活力亦瑶发布了新的文献求助160
刚刚
华仔应助shea采纳,获得10
1秒前
田様应助haoguo采纳,获得10
1秒前
耍酷孤菱发布了新的文献求助10
2秒前
意意发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI5应助夕夜采纳,获得10
3秒前
4秒前
英姑应助叽哩喳啦嘣采纳,获得10
4秒前
lg应助氢锂钠钾铷铯钫采纳,获得10
4秒前
bkagyin应助DLY677采纳,获得10
4秒前
青鱼关注了科研通微信公众号
5秒前
caihong1完成签到,获得积分20
5秒前
KXC2024完成签到,获得积分20
5秒前
5秒前
6秒前
冷傲海完成签到,获得积分10
6秒前
6秒前
小白发布了新的文献求助10
7秒前
7秒前
瘦瘦的元容关注了科研通微信公众号
7秒前
7秒前
含糊的惜文完成签到,获得积分10
8秒前
粥游天下发布了新的文献求助10
8秒前
万能图书馆应助Easton采纳,获得10
8秒前
Joy发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
LXY发布了新的文献求助10
11秒前
12秒前
初a发布了新的文献求助10
13秒前
英姑应助YI采纳,获得10
13秒前
木子发布了新的文献求助30
13秒前
Rjy发布了新的文献求助10
13秒前
夏虫发布了新的文献求助10
13秒前
不吃香菜完成签到,获得积分10
14秒前
007发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790218
求助须知:如何正确求助?哪些是违规求助? 3334933
关于积分的说明 10272867
捐赠科研通 3051419
什么是DOI,文献DOI怎么找? 1674665
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846