Deep learning applications in automatic segmentation and reconstruction in CT-based cervix brachytherapy

近距离放射治疗 豪斯多夫距离 深度学习 分割 医学 人工智能 放射治疗计划 核医学 宫颈癌 百分位 计算机科学 放射治疗 放射科 癌症 数学 统计 内科学
作者
Hai Hu,Qiang Yang,Jie Li,Pei Wang,Bin Tang,Xianliang Wang,Jinyi Lang
出处
期刊:Journal of Contemporary Brachytherapy [Termedia Publishing House]
卷期号:13 (3): 325-330 被引量:19
标识
DOI:10.5114/jcb.2021.106118
摘要

Motivated by recent advances in deep learning, the purpose of this study was to investigate a deep learning method in automatic segment and reconstruct applicators in computed tomography (CT) images for cervix brachytherapy treatment planning.U-Net model was developed for applicator segmentation in CT images. Sixty cervical cancer patients with Fletcher applicator were divided into training data and validation data according to ratio of 50 : 10, and another 10 patients with Fletcher applicator were employed to test the model. Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95) were used to evaluate the model. Segmented applicator coordinates were calculated and applied into RT structure file. Tip error and shaft error of applicators were evaluated. Dosimetric differences between manual reconstruction and deep learning-based reconstruction were compared.The averaged overall 10 test patients' DSC, HD95, and reconstruction time were 0.89, 1.66 mm, and 17.12 s, respectively. The average tip error was 0.80 mm, and the average shaft error was less than 0.50 mm. The dosimetric differences between manual reconstruction and automatic reconstruction were 0.29% for high-risk clinical target volume (HR-CTV) D90%, and less than 2.64% for organs at risk D2cc at a scenario of doubled maximum shaft error.We proposed a deep learning-based reconstruction method to localize Fletcher applicator in three-dimensional CT images. The achieved accuracy and efficiency confirmed our method as clinically attractive. It paves the way for the automation of brachytherapy treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王大锤2015发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
大鱼头完成签到,获得积分10
2秒前
2秒前
英吉利25发布了新的文献求助10
2秒前
2秒前
2秒前
卡卡罗特完成签到 ,获得积分10
3秒前
在水一方应助么么叽采纳,获得10
3秒前
sidegate发布了新的文献求助10
3秒前
汉堡包应助Zymiao采纳,获得10
3秒前
丘比特应助123采纳,获得10
5秒前
5秒前
小马甲应助迷了路的猫采纳,获得10
5秒前
xiaoxioayixi发布了新的文献求助10
6秒前
才露尖尖角完成签到,获得积分10
6秒前
Hello应助亚尔采纳,获得10
6秒前
整齐的一手完成签到,获得积分10
6秒前
san发布了新的文献求助10
7秒前
活力友容发布了新的文献求助10
7秒前
lalala应助村口的王桂芳采纳,获得10
7秒前
汉堡包应助王大锤2015采纳,获得10
10秒前
Akim应助memo采纳,获得10
10秒前
SYLH应助xinxin采纳,获得10
10秒前
活力立诚完成签到,获得积分10
11秒前
丘比特应助滴滴滴滴采纳,获得10
11秒前
Jasper应助sidegate采纳,获得10
12秒前
黄大磊发布了新的文献求助30
13秒前
SciGPT应助YIZHIZOU采纳,获得10
14秒前
583420完成签到 ,获得积分10
14秒前
15秒前
任性白卉完成签到,获得积分10
16秒前
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
Tao应助科研通管家采纳,获得20
17秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861608
求助须知:如何正确求助?哪些是违规求助? 3404020
关于积分的说明 10637676
捐赠科研通 3127156
什么是DOI,文献DOI怎么找? 1724551
邀请新用户注册赠送积分活动 830510
科研通“疑难数据库(出版商)”最低求助积分说明 779220