摘要
Research on energy saving technologies surged in the last decades. One especially relevant technology regards thermal energy storage via phase change materials, or PCM. These materials function as regenerative thermal batteries that can absorb and release thermal energy via the latent heat associated with a phase change, while temperature is kept constant. The advantage of this technology is that due to the latent heat effect the energy density is very high, which reduces the required size of the medium and makes it easier to be coupled with heat loss sources, both in industrial and household applications. The challenge lies, however, in identifying correct PCMs for specific operation temperatures. The goal of the thesis is, then, to develop a novel thermodynamic database that describes the thermodynamic properties of salt mixtures with potential as phase change materials, both for high (up to 800 ℃) and low temperature (up to 100 ℃) applications; and, then, to perform a screening to identify potential PCM compositions in the database.
The database is created with FactSage, a Calphad software, and the systems covered are the anhydrous CaCl2-Ca(NO3)2-KCl-KNO3-NaCl-NaNO3, for high temperature PCMs, and the hydrated Mn(NO3)2-H2O, Zn(NO3)2-H2O, MgSO4-H2O and ZnSO4-H2O, for low temperature PCMs. The liquid solution in all systems is modelled with the non-ideal associates model and, therefore, no aqueous solution model is required. The experimental data used for the assessments come from the literature and from new measurements performed by the partners of the PCM-Screening project (FKZ 03ET1441).
A new program called DataOptimizer has been developed to assist with the optimisation of thermodynamic databases. Relying on the ChemApp software and the NOMAD optimizer, DataOptimizer overcomes many shortcomings of similar database optimisation programs. A graphical user interface featuring a real-time plotting output is also implemented, which allows for a much easier and user-friendly experience. Details about the implementation and features of the program are given.
Finally, the identification of PCM candidates is performed using both phase diagrams calculated with FactSage and a new numerical screening algorithm, which relies on ChemApp. The screening algorithm proves to be capable of identifying eutectics in multicomponent systems automatically without the need for phase diagrams. As a result, twenty-two PCM candidates are identified for high temperature applications within the anhydrous system and, fourteen candidates, for low temperature applications within the hydrated systems.