Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning

计算机科学 杠杆(统计) 网格 沃罗诺图 深度学习 人工智能 卷积神经网络 导线 领域(数学) 机器学习 计算机视觉 数据挖掘 计算机工程 分布式计算 压缩传感 地理 几何学 数学 大地测量学 纯数学
作者
Kai Fukami,Romit Maulik,Nesar Ramachandra,Koji Fukagata,Kunihiko Taira
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (11): 945-951 被引量:84
标识
DOI:10.1038/s42256-021-00402-2
摘要

Achieving accurate and robust global situational awareness of a complex time-evolving field from a limited number of sensors has been a longstanding challenge. This reconstruction problem is especially difficult when sensors are sparsely positioned in a seemingly random or unorganized manner, which is often encountered in a range of scientific and engineering problems. Moreover, these sensors can be in motion and can become online or offline over time. The key leverage in addressing this scientific issue is the wealth of data accumulated from the sensors. As a solution to this problem, we propose a data-driven spatial field recovery technique founded on a structured grid-based deep-learning approach for arbitrary positioned sensors of any numbers. It should be noted that the na\"ive use of machine learning becomes prohibitively expensive for global field reconstruction and is furthermore not adaptable to an arbitrary number of sensors. In the present work, we consider the use of Voronoi tessellation to obtain a structured-grid representation from sensor locations enabling the computationally tractable use of convolutional neural networks. One of the central features of the present method is its compatibility with deep-learning based super-resolution reconstruction techniques for structured sensor data that are established for image processing. The proposed reconstruction technique is demonstrated for unsteady wake flow, geophysical data, and three-dimensional turbulence. The current framework is able to handle an arbitrary number of moving sensors, and thereby overcomes a major limitation with existing reconstruction methods. The presented technique opens a new pathway towards the practical use of neural networks for real-time global field estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助刘芮采纳,获得10
1秒前
搬砖美少女完成签到,获得积分10
1秒前
soar完成签到 ,获得积分10
1秒前
耍酷的梦桃完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
2秒前
MaSaR完成签到,获得积分10
2秒前
搞怪的又蓝完成签到,获得积分10
3秒前
月下荷花完成签到 ,获得积分10
4秒前
勤勤完成签到 ,获得积分10
4秒前
卡卡东完成签到 ,获得积分10
5秒前
何甜甜完成签到,获得积分10
5秒前
乾坤完成签到,获得积分10
6秒前
Heidi完成签到,获得积分10
6秒前
清秀的仙人掌完成签到,获得积分10
6秒前
zhaozhao完成签到,获得积分10
6秒前
831143完成签到 ,获得积分0
8秒前
雨霧雲完成签到,获得积分10
10秒前
人间大清醒完成签到,获得积分10
10秒前
CandyJump完成签到,获得积分10
12秒前
12秒前
多边形完成签到 ,获得积分10
12秒前
风清扬发布了新的文献求助10
13秒前
六子完成签到,获得积分10
13秒前
单纯的小土豆完成签到 ,获得积分10
14秒前
我爱学习完成签到,获得积分10
15秒前
舒适的雁风完成签到,获得积分10
17秒前
muchuan完成签到,获得积分10
17秒前
研友_Z1WkgL完成签到,获得积分10
20秒前
热情蜗牛完成签到 ,获得积分10
21秒前
cloud完成签到,获得积分10
22秒前
龍Ryu完成签到,获得积分10
22秒前
迅速凝竹完成签到 ,获得积分10
23秒前
认真的香芦完成签到 ,获得积分10
24秒前
李蝶儿完成签到 ,获得积分10
26秒前
26秒前
三点半完成签到 ,获得积分10
27秒前
huohuo143完成签到,获得积分10
27秒前
冷酷的安珊完成签到,获得积分10
27秒前
Orange应助idiot采纳,获得10
31秒前
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212550
求助须知:如何正确求助?哪些是违规求助? 4388677
关于积分的说明 13664311
捐赠科研通 4249234
什么是DOI,文献DOI怎么找? 2331457
邀请新用户注册赠送积分活动 1329162
关于科研通互助平台的介绍 1282582