Missing Data Repairs for Traffic Flow With Self-Attention Generative Adversarial Imputation Net

插补(统计学) 数据挖掘 计算机科学 缺少数据 数据建模 人工神经网络 对抗制 生成模型 生成对抗网络 生成语法 人工智能 机器学习 深度学习 数据库
作者
Weibin Zhang,Pulin Zhang,Yinghao Yu,Xiying Li,Salvatore Antonio Biancardo,Junyi Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7919-7930 被引量:47
标识
DOI:10.1109/tits.2021.3074564
摘要

With the rapid development of sensor technologies, time series data collected by multiple and spatially distributed sensors have been widely used in different research fields. Examples of such data include geo-tagged temperature data collected by temperature sensors, air pollutant monitoring data, and traffic data collected by road traffic sensors. Due to sensor failure, communication errors and storage loss, etc., data collected by sensors inevitably includes missing data. However, models commonly used in the analysis of such large-scale data often rely on complete data sets. This paper proposes a model for the imputation of missing data of traffic flow, which combines a self-attention mechanism, an auto-encoder, and a generative adversarial network, into a self-attention generative adversarial imputation net (SA-GAIN). The introduction of the self-attention mechanism can help the proposed model to effectively capture correlations between spatially-distributed sensors at different time points. Adversarial training through two neural networks, called generators and discriminators, allows the proposed model to generate imputed data close to the real data. In comparison with different imputation models, the proposed model shows the best performance in imputing missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏律完成签到,获得积分10
1秒前
霓Q完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
wxj发布了新的文献求助10
2秒前
river123完成签到,获得积分10
2秒前
诚心访琴完成签到,获得积分20
3秒前
尊敬的飞槐完成签到,获得积分10
3秒前
3秒前
bob发布了新的文献求助10
3秒前
3秒前
假装有昵称完成签到,获得积分10
4秒前
Charlie完成签到,获得积分10
4秒前
墨斗鱼给墨斗鱼的求助进行了留言
4秒前
轻松博超完成签到,获得积分10
4秒前
浩浩发布了新的文献求助10
5秒前
呦呦发布了新的文献求助10
5秒前
科研通AI5应助123采纳,获得10
5秒前
TTQ发布了新的文献求助10
5秒前
成功应助KleinFC采纳,获得10
5秒前
6秒前
6秒前
6秒前
Hh完成签到,获得积分20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得30
6秒前
所所应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得30
6秒前
李健应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
打打应助东农刷酱炳采纳,获得10
6秒前
暗号发布了新的文献求助10
7秒前
搜集达人应助为你等候采纳,获得10
7秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790087
求助须知:如何正确求助?哪些是违规求助? 3334781
关于积分的说明 10272224
捐赠科研通 3051278
什么是DOI,文献DOI怎么找? 1674537
邀请新用户注册赠送积分活动 802651
科研通“疑难数据库(出版商)”最低求助积分说明 760828