Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow

工作流程 步态 选择(遗传算法) 计算机科学 机器人 人工智能 模拟 物理医学与康复 生物 医学 渔业 数据库
作者
Mohammad Sharifzadeh,Yuhao Jiang,Amir Salimi Lafmejani,Kevin P. Nichols,Daniel M. Aukes
出处
期刊:Bioinspiration & Biomimetics [IOP Publishing]
卷期号:16 (5): 056017-056017 被引量:9
标识
DOI:10.1088/1748-3190/ac165d
摘要

Among underwater vehicles, fish-inspired designs are often selected for their efficient gaits; these designs, however, remain limited in their maneuverability, especially in confined spaces. This paper presents a new design for a fish-inspired robot with two degree-of-freedom pectoral fins and a single degree-of-freedom caudal fin. This robot has been designed to operate in open-channel canals in the presence of external disturbances. With the complex interactions of water in mind, the composition of goal-specific swimming gaits is trained via a machine learning workflow in which automated trials in the lab are used to select a subset of potential gaits for outdoor trials. The goal of this process is to minimize the time cost of outdoor experimentation through the identification and transfer of high-performing gaits with the understanding that, in the absence of complete replication of the intended target environment, some or many of these gaits must be eliminated in the real world. This process is motivated by the challenge of balancing the optimization of complex, high degree-of-freedom robots for disturbance-heavy, random, niche environments against the limitations of current machine learning techniques in real-world experiments, and has been used in the design process as well as across a number of locomotion goals. The key contribution of this paper involves finding strategies that leverage online learning methods to train a bio-inspired fish robot by identifying high-performing gaits that have a consistent performance both in the laboratory experiments and the intended operating environment. Using the workflow described herein, the resulting robot can reach a forward swimming speed of 0.385 m s-1(0.71 body lengths per second) and can achieve a near-zero turning radius.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RCRCRC1995完成签到 ,获得积分20
1秒前
1秒前
qq完成签到,获得积分10
1秒前
可爱的函函应助痴痴的噜采纳,获得10
2秒前
tianred2019完成签到 ,获得积分10
2秒前
2秒前
3秒前
www完成签到,获得积分10
3秒前
aaronwolf给adeno的求助进行了留言
3秒前
爆米花应助monair采纳,获得10
4秒前
5秒前
赵琪发布了新的文献求助10
6秒前
6秒前
7秒前
刘七七努力搞科研完成签到 ,获得积分10
8秒前
小正发布了新的文献求助10
8秒前
ilc发布了新的文献求助10
8秒前
枯槁赴渊发布了新的文献求助10
11秒前
追风发布了新的文献求助10
12秒前
mxtsusan发布了新的文献求助10
12秒前
龚昊完成签到,获得积分10
12秒前
14秒前
浅浪完成签到,获得积分10
14秒前
文章收割机完成签到,获得积分10
15秒前
FashionBoy应助xunanlei采纳,获得10
15秒前
yihuiqing完成签到,获得积分10
15秒前
科研通AI5应助李娟采纳,获得10
16秒前
儒雅的汲完成签到 ,获得积分20
17秒前
18秒前
~~~~完成签到 ,获得积分10
18秒前
19秒前
19秒前
21秒前
23秒前
23秒前
pegasus发布了新的文献求助10
23秒前
24秒前
24秒前
故酒应助ZhouXB采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 800
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5029427
求助须知:如何正确求助?哪些是违规求助? 4264923
关于积分的说明 13296093
捐赠科研通 4073309
什么是DOI,文献DOI怎么找? 2227877
邀请新用户注册赠送积分活动 1236570
关于科研通互助平台的介绍 1160691