Oxygen vacancy-rich WO3 heterophase structure: A trade-off between surface-limited pseudocapacitance and intercalation-limited behaviour

假电容 插层(化学) 超级电容器 电容 材料科学 化学工程 纳米技术 析氧 空位缺陷 阳极 电化学 X射线光电子能谱 电极 阴极 氧化物 化学物理 氧气 化学 无机化学 物理化学 有机化学 工程类
作者
Xu Dong Liu,Qi Yang,Lei Yuan,Daojian Qi,Xiujuan Wei,Xiuwen Zhou,Shufan Chen,Linhong Cao,Yong Zeng,Jinzhi Jia,Chaoyang Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:425: 131431-131431 被引量:17
标识
DOI:10.1016/j.cej.2021.131431
摘要

Intercalation-pseudocapacitance materials are attracting increasing interest as promising electrodes for use in high-capacitance supercapacitors. However, these materials typically exhibit unsatisfactory rate performances due to their relatively slow cation-insertion process. Under high mass loading, their rate performances are even further degraded. Herein is presented our fabrication of an oxygen vacancy-rich h-WO3/ort-WO3·0.33H2O heterophase structure (HOHS) by a facile hydrothermal synthesis. The HOHS has a split-level nanotubes-on-nanoplates morphology and its formation and energy-storage mechanisms are discussed in detail. The HOHS exhibits a collaborative charge-storage mechanism involving surface redox and proton intercalation, and the capacitance contribution associated with the proton intercalation can be regulated over a wide range. By achieving a trade-off between the surface-limited pseudocapacitance and intercalation-limited behaviours and regulating its morphology, the HOHS electrode with an ultra-high mass loading of 10.8 mg cm−2 delivers a high areal capacitance of 2552 mF cm−2 at 1 mA cm−2 and excellent long-term stability. More importantly, the rate performance of the HOHS (78% capacitance retention at 20 mA cm−2 in comparison to 1 mA cm−2) is better than those reported for WO3-based materials. This strategy opens avenues for the fundamental study of the regulation of the energy storage mechanism and the achievement of a trade-off between the capacitance and rate capability in high-mass-loading electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助huangy采纳,获得10
刚刚
天真书南完成签到,获得积分20
刚刚
田様应助悲凉的妙松采纳,获得10
1秒前
所所应助00000采纳,获得30
1秒前
wut19881012发布了新的文献求助10
2秒前
爆米花应助小小心愿采纳,获得10
3秒前
May完成签到,获得积分10
4秒前
小马甲应助Hunter采纳,获得10
4秒前
5秒前
Lucas应助su采纳,获得30
5秒前
领导范儿应助pooh采纳,获得10
5秒前
大模型应助nalan采纳,获得10
5秒前
799发布了新的文献求助10
6秒前
wdjz1207完成签到,获得积分10
6秒前
6秒前
失眠双双发布了新的文献求助10
6秒前
7秒前
文献小松鼠完成签到,获得积分10
8秒前
daihq3完成签到,获得积分10
9秒前
吗喽完成签到,获得积分10
10秒前
daihq3发布了新的文献求助10
12秒前
huangy发布了新的文献求助10
13秒前
星辰大海应助cai白白采纳,获得10
13秒前
miku1发布了新的文献求助10
14秒前
15秒前
迷路路人完成签到,获得积分10
16秒前
aaron完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
卓念梦完成签到 ,获得积分10
19秒前
miku1完成签到,获得积分10
19秒前
19秒前
20秒前
研友_VZG7GZ应助入江采纳,获得10
20秒前
aaron发布了新的文献求助10
20秒前
astiria应助机智夜安采纳,获得10
21秒前
menghongmei发布了新的文献求助20
21秒前
麦麦发布了新的文献求助10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114261
求助须知:如何正确求助?哪些是违规求助? 3652682
关于积分的说明 11566689
捐赠科研通 3356759
什么是DOI,文献DOI怎么找? 1843795
邀请新用户注册赠送积分活动 909730
科研通“疑难数据库(出版商)”最低求助积分说明 826492