Oxygen vacancy-rich WO3 heterophase structure: A trade-off between surface-limited pseudocapacitance and intercalation-limited behaviour

假电容 插层(化学) 超级电容器 电容 材料科学 化学工程 纳米技术 析氧 空位缺陷 阳极 电化学 X射线光电子能谱 电极 阴极 氧化物 化学物理 氧气 化学 无机化学 物理化学 有机化学 工程类
作者
Xu Dong Liu,Qi Yang,Lei Yuan,Daojian Qi,Xiujuan Wei,Xiuwen Zhou,Shufan Chen,Linhong Cao,Yong Zeng,Jinzhi Jia,Chaoyang Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:425: 131431-131431 被引量:17
标识
DOI:10.1016/j.cej.2021.131431
摘要

Intercalation-pseudocapacitance materials are attracting increasing interest as promising electrodes for use in high-capacitance supercapacitors. However, these materials typically exhibit unsatisfactory rate performances due to their relatively slow cation-insertion process. Under high mass loading, their rate performances are even further degraded. Herein is presented our fabrication of an oxygen vacancy-rich h-WO3/ort-WO3·0.33H2O heterophase structure (HOHS) by a facile hydrothermal synthesis. The HOHS has a split-level nanotubes-on-nanoplates morphology and its formation and energy-storage mechanisms are discussed in detail. The HOHS exhibits a collaborative charge-storage mechanism involving surface redox and proton intercalation, and the capacitance contribution associated with the proton intercalation can be regulated over a wide range. By achieving a trade-off between the surface-limited pseudocapacitance and intercalation-limited behaviours and regulating its morphology, the HOHS electrode with an ultra-high mass loading of 10.8 mg cm−2 delivers a high areal capacitance of 2552 mF cm−2 at 1 mA cm−2 and excellent long-term stability. More importantly, the rate performance of the HOHS (78% capacitance retention at 20 mA cm−2 in comparison to 1 mA cm−2) is better than those reported for WO3-based materials. This strategy opens avenues for the fundamental study of the regulation of the energy storage mechanism and the achievement of a trade-off between the capacitance and rate capability in high-mass-loading electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
很傻的狗完成签到,获得积分10
1秒前
ABC完成签到,获得积分10
3秒前
苹果巧蕊完成签到 ,获得积分10
5秒前
英俊的铭应助闫晓丽采纳,获得10
5秒前
余额发布了新的文献求助10
5秒前
icecream完成签到,获得积分10
5秒前
知来者完成签到,获得积分10
6秒前
鸠摩智完成签到,获得积分10
8秒前
朽木完成签到 ,获得积分10
8秒前
10秒前
11秒前
暮寻屿苗完成签到 ,获得积分10
11秒前
科研通AI5应助哔哔鱼采纳,获得10
13秒前
Akim应助NXK采纳,获得10
14秒前
沉默哈密瓜完成签到 ,获得积分10
15秒前
17秒前
SciGPT应助Minguk采纳,获得10
18秒前
23秒前
Anjianfubai完成签到,获得积分10
25秒前
26秒前
NXK发布了新的文献求助10
28秒前
29秒前
31秒前
31秒前
31秒前
ABC发布了新的文献求助10
32秒前
feng发布了新的文献求助10
32秒前
kbcbwb2002完成签到,获得积分10
33秒前
微醺小王完成签到 ,获得积分10
33秒前
34秒前
球球发布了新的文献求助10
35秒前
坤坤发布了新的文献求助10
36秒前
Minguk发布了新的文献求助10
36秒前
瘦瘦友儿发布了新的文献求助10
36秒前
SU发布了新的文献求助10
41秒前
HWei完成签到,获得积分10
42秒前
44秒前
乐乐应助prim采纳,获得10
44秒前
Yina完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959