An optimized machine learning approach to water pollution variation monitoring with time-series Landsat images

污染 特大城市 环境科学 污染物 投影寻踪 粒子群优化 极限学习机 遥感 地理 计算机科学 机器学习 人工智能 生态学 人工神经网络 生物
作者
Yi Lin,Lang Li,Jie Yu,Yuan Hu,Tinghui Zhang,Zhanglin Ye,Awase Khirni Syed,Jonathan Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:102: 102370-102370 被引量:7
标识
DOI:10.1016/j.jag.2021.102370
摘要

Non-point source (NPS) pollution has greatly threatened socio-economic development and human health due to water environment degradation. It is very important to quantitatively analyze spatio-temporal variation rules of NPS pollution sources surrounding drinking water source area (DWSA) and their impact on the water environment with time-series satellite images. In this paper, we study a systematic remote sensing monitoring method on DWSA of upper Huangpu River, Shanghai. Firstly, an optimized Extreme Learning Machine (ELM) classification algorithm, namely Mixed Kernel ELM with Particle Swarm Optimization (PSO-MK-ELM) was constructed. Based on the PSO-MK-ELM, four NPS pollution sources- farmland, building land, woodland, and water were identified accurately and efficiently. Then their corresponding spatiotemporal analysis was performed with 30 years (1989–2019) Landsat images. On the basis of NPS pollution source area and census data from 1989 to 2017, the principal pollutants discharged into DWSA were also calculated with the common Export Coefficient Model (ECM). Finally, the contributions of the spatial and temporal changes of NPS pollution sources on pollutant emissions were analyzed. The result indicates the PSO-MK-ELM has an advantage of efficiency and accuracy in NPS pollution source extraction and our results are expected to provide a scientific basis and data support for NPS pollution control and DWSA protection for better practices for environmental management in megacities worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分10
刚刚
在水一方应助寒素采纳,获得10
3秒前
今后应助wangxiaoli0991采纳,获得20
3秒前
Owen应助wuxunxun2015采纳,获得10
4秒前
jjj应助yecheng采纳,获得10
6秒前
Ava应助大姨妈采纳,获得10
7秒前
7秒前
8秒前
Diiing发布了新的文献求助10
8秒前
赘婿应助菜菜Cc采纳,获得10
10秒前
柚仝完成签到,获得积分10
10秒前
11秒前
12秒前
yu完成签到,获得积分10
12秒前
ardejiang发布了新的文献求助10
13秒前
13秒前
柚仝发布了新的文献求助10
15秒前
17秒前
18秒前
20秒前
特安谭完成签到,获得积分10
21秒前
充电宝应助mj2016采纳,获得10
21秒前
23秒前
菜菜Cc发布了新的文献求助10
23秒前
明亮的尔竹完成签到,获得积分10
23秒前
24秒前
24秒前
啛啛喳喳发布了新的文献求助10
24秒前
24秒前
善学以致用应助羽王采纳,获得10
25秒前
liekkas完成签到,获得积分10
26秒前
26秒前
1112发布了新的文献求助10
27秒前
厚礼蟹完成签到,获得积分10
28秒前
wuxunxun2015发布了新的文献求助10
28秒前
28秒前
SciGPT应助寻123采纳,获得10
28秒前
jjj应助甜美的绮菱采纳,获得10
29秒前
本本发布了新的文献求助10
29秒前
鹿鹿完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783597
求助须知:如何正确求助?哪些是违规求助? 3328724
关于积分的说明 10238386
捐赠科研通 3044064
什么是DOI,文献DOI怎么找? 1670794
邀请新用户注册赠送积分活动 799874
科研通“疑难数据库(出版商)”最低求助积分说明 759171