Deep learning of fundus and optical coherence tomography images enables identification of diverse genetic and environmental factors associated with eye aging

光学相干层析成像 眼底(子宫) 眼科 黄斑变性 全基因组关联研究 德鲁森 视网膜 医学 生物 遗传学 基因 基因型 单核苷酸多态性
作者
Alan Le Goallec,Samuel Diai,Sasha Collin,Vincent Thouvenot,Chirag J. Patel
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:4
标识
DOI:10.1101/2021.06.24.21259471
摘要

Abstract Background The rate at which different portions of the eye ages can be measured using eye fungus and optical coherence tomography (OCT) images; however, their genetic and environmental contributors have been elusive. Methods We built an eye age predictor by training convolutional neural networks to predict age from 175,000 eye fundus and OCT images from participants of the UK Biobank cohort, capturing two different dimensions of eye (retinal, macula, fovea) aging. We performed a genome-wide association study (GWAS) and high-throughput epidemiology to identify novel genetic and environmental variables associated with the new age predictor, finding variables associated with accelerated eye aging. Findings Fundus-based and OCT-based eye aging capture different dimensions of eye aging, whose combination predicted chronological age with an R 2 and mean absolute error of 83.6±0.6%/2.62±0.05 years. In comparison, the fundus-based and OCT-based predictor alone predicted age with R 2 of 76.6±1.3% vs. 70.8±1.2% respectively. Accelerated eye fundus- and OCT-measured accelerated aging has a significant genetic component, with heritability (total contribution of GWAS variants) of 26 and 23% respectively. For eye fundus measured aging, we report novel variants in the FAM150B gene ( ALKAL2 , or ALK ligand 2) (p<1×10 -150 ); for OCT-measured eye aging, we found variants in genes such as CFH (complement factor H), COL4A4 (type 4 collagen), and RLBP (retinaldehyde binding protein 1, all p<1×10 -20 ). Eye accelerated aging is also associated with behaviors and socioeconomic status, such as sleep deprivation and lower income. Conclusions Our new deep-learning-based digital readouts, the best eye aging predictor to date, suggest a biological basis of eye aging. These new data can be harnessed for scalable genetic and epidemiological dissection and discovery of aging specific to different components of the eye and their relationship with different diseases of aging. Funding National Institutes of Health, National Science Foundation, MassCATS, Sanofi. Funders had no role in the project. Research in context Evidence before this study We performed a search on NCBI PubMed and Google Scholar searching for the terms, “eye aging”, “optical coherence tomography” (OCT), “fundus”, and/or “deep learning”. We found others have shown feasibility of predicting chronological age from eye image modalities, finding five publications that demonstrated chronological age may be predicted from images inside and outside of the eye, with mean absolute errors ranging from 2.3-5.82 years. Added value of this study Our new eye age predictor combines both OCT and fundus images to assemble the most accurate fundus/OCT age predictor to date (mean absolute error of 2.62 years). Second, we have identified new genetic loci (e.g., in FAM150B ) and epidemiological associations with eye accelerated age, highlighting the biological and environmental correlates of eye age, elusive in other investigations and made scalable by deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
acetdw发布了新的文献求助30
刚刚
3秒前
叶子发布了新的文献求助10
3秒前
梅竹完成签到,获得积分10
3秒前
蛙蛙完成签到,获得积分10
3秒前
xia完成签到,获得积分10
5秒前
拼搏的秋柔完成签到,获得积分10
6秒前
acetdw完成签到,获得积分10
7秒前
研友_8QyXr8发布了新的文献求助20
10秒前
adgadsf发布了新的文献求助10
11秒前
共享精神应助yanyl采纳,获得10
12秒前
超帅曼柔完成签到,获得积分10
13秒前
ymr完成签到 ,获得积分10
14秒前
14秒前
14秒前
李爱国应助果子采纳,获得10
14秒前
善良乐松完成签到,获得积分10
15秒前
zz完成签到,获得积分10
16秒前
fls221完成签到,获得积分10
16秒前
恨安完成签到,获得积分10
18秒前
wsh发布了新的文献求助10
18秒前
18秒前
快乐小狗发布了新的文献求助10
19秒前
shawn_89完成签到,获得积分10
19秒前
樱sky完成签到,获得积分10
20秒前
科研通AI5应助超帅的豪英采纳,获得10
22秒前
CodeCraft应助虚拟的怀绿采纳,获得10
22秒前
微笑的秀儿完成签到,获得积分10
23秒前
研友_8QyXr8完成签到,获得积分10
24秒前
24秒前
Akim应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
mbl2006完成签到 ,获得积分10
25秒前
勤奋修勾完成签到,获得积分10
25秒前
wch666发布了新的文献求助50
25秒前
26秒前
luvie完成签到,获得积分10
27秒前
ivylyu完成签到 ,获得积分10
28秒前
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214