Infrared and Visible Image Object Detection via Focused Feature Enhancement and Cascaded Semantic Extension

计算机科学 卷积神经网络 人工智能 目标检测 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 哲学
作者
Xiaowu Xiao,Bo Wang,Lingjuan Miao,Linhao Li,Zhiqiang Zhou,Jinlei Ma,Dandan Dong
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (13): 2538-2538 被引量:10
标识
DOI:10.3390/rs13132538
摘要

Infrared and visible images (multi-sensor or multi-band images) have many complementary features which can effectively boost the performance of object detection. Recently, convolutional neural networks (CNNs) have seen frequent use to perform object detection in multi-band images. However, it is very difficult for CNNs to extract complementary features from infrared and visible images. In order to solve this problem, a difference maximum loss function is proposed in this paper. The loss function can guide the learning directions of two base CNNs and maximize the difference between features from the two base CNNs, so as to extract complementary and diverse features. In addition, we design a focused feature-enhancement module to make features in the shallow convolutional layer more significant. In this way, the detection performance of small objects can be effectively improved while not increasing the computational cost in the testing stage. Furthermore, since the actual receptive field is usually much smaller than the theoretical receptive field, the deep convolutional layer would not have sufficient semantic features for accurate detection of large objects. To overcome this drawback, a cascaded semantic extension module is added to the deep layer. Through simple multi-branch convolutional layers and dilated convolutions with different dilation rates, the cascaded semantic extension module can effectively enlarge the actual receptive field and increase the detection accuracy of large objects. We compare our detection network with five other state-of-the-art infrared and visible image object detection networks. Qualitative and quantitative experimental results prove the superiority of the proposed detection network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助TWX采纳,获得10
1秒前
Jasper应助good233采纳,获得10
1秒前
wanci应助qqa采纳,获得10
2秒前
2秒前
乔治完成签到,获得积分10
3秒前
bkagyin应助小田采纳,获得10
3秒前
小全关注了科研通微信公众号
3秒前
宋莱文完成签到,获得积分10
3秒前
3秒前
伶俐惜萱发布了新的文献求助10
3秒前
顺心纸鹤发布了新的文献求助10
5秒前
100发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
8秒前
8秒前
8秒前
10秒前
驴橘子窈发布了新的文献求助10
10秒前
10秒前
科研通AI5应助Aurora采纳,获得10
11秒前
FashionBoy应助yujia采纳,获得10
11秒前
11秒前
研友_VZG7GZ应助伶俐惜萱采纳,获得30
11秒前
long0809发布了新的文献求助10
12秒前
欢城发布了新的文献求助10
12秒前
12秒前
慕容博发布了新的文献求助10
12秒前
13秒前
顾矜应助彩色青亦采纳,获得10
13秒前
科研通AI5应助牛牛采纳,获得10
13秒前
14秒前
上官若男应助小苏采纳,获得10
15秒前
程雯慧发布了新的文献求助10
15秒前
鹿小新发布了新的文献求助10
15秒前
qqa发布了新的文献求助10
15秒前
思源应助大方研究生采纳,获得10
16秒前
苹果千秋完成签到 ,获得积分10
17秒前
CipherSage应助林小乌龟采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271