An Advanced Decision Making Framework via Joint Utilization of Context-Dependent Data Envelopment Analysis and Sentimental Messages

数据包络分析 计算机科学 背景(考古学) 潜在Dirichlet分配 线性判别分析 主成分分析 利用 构造(python库) 变量(数学) 数据挖掘 过程(计算) 人工智能 运筹学 机器学习 主题模型 工程类 数学优化 数学 操作系统 数学分析 古生物学 生物 程序设计语言 计算机安全
作者
Hsueh-Li Huang,Sin-Jin Lin,Ming-Fu Hsu
出处
期刊:Axioms [Multidisciplinary Digital Publishing Institute]
卷期号:10 (3): 179-179 被引量:1
标识
DOI:10.3390/axioms10030179
摘要

Compared to widely examined topics in the related literature, such as financial crises/difficulties in accurate prediction, studies on corporate performance forecasting are quite scarce. To fill the research gap, this study introduces an advanced decision making framework that incorporates context-dependent data envelopment analysis (CD-DEA), fuzzy robust principal component analysis (FRPCA), latent Dirichlet allocation (LDA), and stochastic gradient twin support vector machine (SGTSVM) for corporate performance forecasting. Ratio analysis with the merits of easy-to-use and intuitiveness plays an essential role in performance analysis, but it typically has one input variable and one output variable, which is unable to appropriately depict the inherent status of a corporate’s operations. To combat this, we consider CD-DEA as it can handle multiple input and multiple output variables simultaneously and yields an attainable target to analyze decision making units (DMUs) when the data present great variations. To strengthen the discriminant ability of CD-DEA, we also conduct FRPCA, and because numerical messages based on historical principles normally cannot transmit future corporate messages, we execute LDA to decompose the accounting narratives into many topics and preserve those topics that are relevant to corporate operations. Sequentially, the process matches the preserved topics with a sentimental dictionary to exploit the hidden sentiments in each topic. The analyzed data are then fed into SGTSVM to construct the forecasting model. The result herein reveals that the introduced decision making framework is a promising alternative for performance forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAODEN完成签到,获得积分10
2秒前
冰魂应助舒适路人采纳,获得10
3秒前
阿罗宁宁完成签到 ,获得积分10
3秒前
3秒前
Leon应助mujin采纳,获得10
4秒前
干净盼山完成签到,获得积分10
5秒前
5秒前
泠199完成签到,获得积分10
5秒前
5秒前
LArry完成签到,获得积分10
6秒前
6秒前
VitoLi发布了新的文献求助10
7秒前
汉堡包应助11采纳,获得10
8秒前
10秒前
木影忆发布了新的文献求助10
11秒前
11秒前
fffff发布了新的文献求助10
11秒前
随遇而安应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
智守奇安完成签到,获得积分10
15秒前
爆米花应助舒适路人采纳,获得10
15秒前
16秒前
16秒前
小海应助朱彤彤采纳,获得10
17秒前
深情安青应助啄春泥采纳,获得10
17秒前
Owen应助研友_ngX12Z采纳,获得10
18秒前
小远远发布了新的文献求助10
19秒前
wanidamm完成签到,获得积分10
21秒前
11发布了新的文献求助10
21秒前
3654289完成签到,获得积分10
23秒前
Dolbar关注了科研通微信公众号
25秒前
26秒前
洁净的雪一完成签到 ,获得积分10
26秒前
27秒前
科研通AI5应助舒适路人采纳,获得10
27秒前
科研通AI5应助欢呼阁采纳,获得10
28秒前
tu123完成签到,获得积分10
28秒前
Ava应助研友_ngX12Z采纳,获得10
31秒前
Jasper应助开朗元槐采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242254
捐赠科研通 3044938
什么是DOI,文献DOI怎么找? 1671417
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759342