亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Metro Short-Term Origin-Destination Passenger Flow Forecasting Considering Section Capacity Utilization Ratio

卷积神经网络 计算机科学 深度学习 网格 人工智能 特征(语言学) 数据挖掘 人工神经网络 期限(时间) 功能(生物学) 机器学习 块(置换群论) 地理 数学 生物 哲学 物理 几何学 进化生物学 量子力学 语言学 大地测量学
作者
Yan Zhang,Keyang Sun,Di Wen,Dingjun Chen,Hongxia Lv,Qingpeng Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tits.2023.3266371
摘要

Origin-destination (OD) short-term passenger flow forecasting (OD STPFF) in urban rail transit (URT) is essential for developing timely network measures. The capacity utilization ratios of critical sections are key factors in developing these measures. The OD pairs passing through critical sections require a higher prediction accuracy than others; however, most studies have raised equal concerns on the prediction accuracy of each OD pair, namely, prediction at the network level. To address this problem, we raise heterogeneous time-variant concerns on OD pairs and employ an operation-oriented deep-learning architecture called the spatiotemporal convolutional neural network (STCNN) for realizing short-term OD passenger flow prediction. The architecture contains OD pair importance calculation, lagged spatiotemporal relationship construction, lagged spatiotemporal learning, real-time information learning, and sequential-temporal learning blocks. To this end, critical OD pairs are ascertained first, and the topological lagged spatiotemporal relationship among critical OD pairs are constructed and then normalized into grid-shaped data. The third block utilizes a convolutional neural network (CNN) to learn the grid-shaped lagged spatiotemporal feature and real-time information in parallel. A temporal convolutional neural network (TCN) is utilized for learning the sequential-temporal feature at last. Further, we design a time-varying weighted masked loss function to jointly reinforce the concerns on critical OD pairs during model training. Finally, we test the proposed STCNN and its components on a field dataset from Chengdu Metro. Although the proposed STCNN performs only slightly better at the network level than the other models, it outperforms state-of-the-art methods with significant superiority on critical OD pairs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
mashibeo完成签到,获得积分10
27秒前
赘婿应助llll采纳,获得30
1分钟前
烟花应助科研通管家采纳,获得10
2分钟前
sowhat完成签到 ,获得积分10
2分钟前
淡水美人鱼完成签到,获得积分10
3分钟前
严珍珍完成签到 ,获得积分10
3分钟前
柔弱烨霖完成签到,获得积分20
3分钟前
刀特左完成签到,获得积分10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
FashionBoy应助janice采纳,获得10
4分钟前
4分钟前
llll发布了新的文献求助30
4分钟前
隐形曼青应助陶醉的手套采纳,获得10
4分钟前
小学生完成签到 ,获得积分10
5分钟前
行走完成签到,获得积分10
5分钟前
李爱国应助llll采纳,获得10
5分钟前
5分钟前
5分钟前
null完成签到,获得积分10
6分钟前
研友_ndDGVn完成签到 ,获得积分10
7分钟前
绾妤完成签到 ,获得积分10
10分钟前
Demi_Ming发布了新的文献求助10
10分钟前
andrele应助科研通管家采纳,获得10
10分钟前
11分钟前
11分钟前
义气的书雁完成签到,获得积分10
11分钟前
陶醉的手套完成签到,获得积分10
11分钟前
我是老大应助陶醉的手套采纳,获得10
11分钟前
andrele应助科研通管家采纳,获得10
12分钟前
12分钟前
共享精神应助科研通管家采纳,获得10
12分钟前
楠茸完成签到 ,获得积分10
12分钟前
yuqinghui98完成签到 ,获得积分10
13分钟前
呆呆的猕猴桃完成签到 ,获得积分10
13分钟前
JamesPei应助科研通管家采纳,获得10
14分钟前
andrele应助科研通管家采纳,获得10
14分钟前
兜兜完成签到,获得积分10
14分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804187
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341092
捐赠科研通 3065173
什么是DOI,文献DOI怎么找? 1682960
邀请新用户注册赠送积分活动 808557
科研通“疑难数据库(出版商)”最低求助积分说明 764600