Constraint subsets-based evolutionary multitasking for constrained multiobjective optimization

计算机科学 人类多任务处理 约束(计算机辅助设计) 数学优化 进化算法 多目标优化 约束优化 人工智能 机器学习 认知心理学 数学 几何学 心理学
作者
Kunjie Yu,Lingjun Wang,Jing Liang,Heshan Wang,Kangjia Qiao,T. Y. Liang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:86: 101531-101531 被引量:2
标识
DOI:10.1016/j.swevo.2024.101531
摘要

Constrained multiobjective optimization problems (CMOPs) are challenging because they need to optimize multiple conflicting objectives and satisfy various constraints simultaneously. To solve CMOPs, various constrained multiobjective evolutionary algorithms have been proposed in recent years. However, most of them tackle constraints by considering all constraints or zero constraint scenarios, these extreme treatment methods may be unable to utilize the information of multiple constraint subsets composed of partial constraints to maintain more promising infeasible solutions. To remedy this issue, a constraint subsets-based evolutionary multitasking method is developed, where a CMOP is transformed into a multitasking optimization problem by creating multiple simple auxiliary CMOPs. Particularly, the original CMOP is the main task, while the newly created CMOPs with different constraint subsets are the auxiliary tasks. Each task will be evolved by one specific population, and the knowledge transfer is conducted among tasks to realize the collaborative search. Meanwhile, the updating of the auxiliary task involves two stages. In the first stage, each auxiliary population will evolve to approach the pareto front of the constraint subset (s-CPF), promoting crossing the infeasible regions. While in the second stage, a feasible region-based search mechanism is proposed to approach the pareto front of the main task from each s-CPF, by utilizing unique and promising infeasible solutions. In addition, systematic experiments are carried out on three benchmark test suites and four real-world CMOPs. The experimental results fully demonstrate that the proposed algorithm is highly competitive with other state-of-the-art constrained multiobjective evolutionary algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
未来可期发布了新的文献求助10
2秒前
3秒前
爆米花应助涟漪采纳,获得10
3秒前
3秒前
哈哈哈哈完成签到,获得积分10
4秒前
sdfwsdfsd发布了新的文献求助10
4秒前
段兴飞完成签到 ,获得积分10
4秒前
从容山灵完成签到,获得积分10
4秒前
青草木发布了新的文献求助10
5秒前
5秒前
hahhhhhh2完成签到,获得积分10
5秒前
5秒前
6秒前
乔达摩完成签到 ,获得积分10
6秒前
7秒前
Lxt发布了新的文献求助10
8秒前
闫111发布了新的文献求助10
9秒前
曾文慧完成签到,获得积分10
10秒前
10秒前
饱满的小鸭子完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
linx应助未来可期采纳,获得10
12秒前
哈哈哈哈发布了新的文献求助10
12秒前
hh发布了新的文献求助10
12秒前
12秒前
迷人若冰发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
大力音响发布了新的文献求助10
13秒前
14秒前
纸鹤完成签到,获得积分10
15秒前
zx发布了新的文献求助10
15秒前
吕敬瑶发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4831031
求助须知:如何正确求助?哪些是违规求助? 4136302
关于积分的说明 12802112
捐赠科研通 3878679
什么是DOI,文献DOI怎么找? 2133389
邀请新用户注册赠送积分活动 1153666
关于科研通互助平台的介绍 1051992