A Multi-Modal Tensor Ring Decomposition for Communication-Efficient and Trustworthy Federated Learning for ITS in COVID-19 Scenario

2019年冠状病毒病(COVID-19) 情态动词 计算机科学 分解 可信赖性 张量分解 戒指(化学) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 张量(固有定义) 人工智能 病毒学 数学 化学 医学 计算机安全 传染病(医学专业) 疾病 有机化学 病理 纯数学 爆发 高分子化学
作者
Ruonan Zhao,Laurence T. Yang,Debin Liu,Xiaokang Zhou,Xianjun Deng,Xueming Tang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 3535-3547 被引量:3
标识
DOI:10.1109/tits.2023.3273167
摘要

Traffic and the movement of people are inextricably associated with the potential spread of COVID-19. In Intelligent Transportation System (ITS), Deep Learning (DL) traffic detection approaches driven by transportation big data have significant application values in monitoring, counting and classifying traffic vehicle information during the COVID-19 epidemic blockade, while DL COVID-19 medical diagnostic technology is also very important. However, due to concerns about data privacy and security, traditional data-centralized DL techniques that require uploading training data from multiple cameras or hospitals are no longer suitable. Federated Learning (FL) as a novel collaborative privacy-preserving DL paradigm could address this issue well. Nevertheless, in FL, most existing works train learning models with full-precision weights and communicate them over multiple iterations, which may incur massive additional communication costs and disclose the privacy implied in the trained local models. To tackle these issues, we first propose a novel multi-modal tensor ring decomposition TR-TSVD that not only achieves efficient data reduction but also keeps the correlations among multi-modes. Afterward, applying TR-TSVD to the training process of a convolutional neural network under the FL framework to achieve the goal of reducing communication overhead while ensuring model performance. Additionally, since the weight parameters are transmitted with the TR-TSVD format, attackers cannot infer the data privacy without knowing the specific restoration method. Besides, the additively homomorphic encryption is leveraged to further preserve model security. Extensive experimental results on MNIST, BIT-Vehicle and COVID-CT datasets show that the proposed approach could achieve a better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三物完成签到 ,获得积分10
1秒前
1秒前
sivan完成签到,获得积分10
2秒前
小富发布了新的文献求助10
2秒前
illusion2019应助科研通管家采纳,获得10
3秒前
竹筏过海应助科研通管家采纳,获得30
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
竹筏过海应助科研通管家采纳,获得30
3秒前
illusion2019应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助lc采纳,获得10
4秒前
wws完成签到,获得积分10
5秒前
6秒前
思源应助zhouxu采纳,获得10
7秒前
7秒前
朱zz发布了新的文献求助10
7秒前
hugo完成签到,获得积分10
7秒前
大个应助英雷采纳,获得10
8秒前
nature完成签到,获得积分10
8秒前
鲸鱼发布了新的文献求助20
9秒前
汉堡包应助毕业顺利采纳,获得10
9秒前
9秒前
可爱的函函应助BQ采纳,获得10
9秒前
12秒前
12秒前
搜集达人应助xinxinxin采纳,获得10
13秒前
共享精神应助hitori采纳,获得10
13秒前
FashionBoy应助猪猪hero采纳,获得10
13秒前
Ava应助朱zz采纳,获得10
13秒前
13秒前
4归0发布了新的文献求助10
14秒前
14秒前
14秒前
希望天下0贩的0应助moji采纳,获得10
15秒前
15秒前
16秒前
16秒前
小二郎完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409