亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks

超图 计算机科学 数学 离散数学
作者
Ming Wang,Yong Zhang,Xia Zhao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5496-5509 被引量:3
标识
DOI:10.1109/tcss.2024.3372856
摘要

Accurate prediction of origin-destination (OD) demand is critical for service providers to efficiently allocate limited resources in regions with high travel demands. However, OD distributions pose significant challenges, characterized by high sparsity, complex spatial correlations within regions or chains, and potential repetition due to the recurrence of similar semantic contexts. These challenges impede traditional graph-based approaches, which connect two vertices through an edge, from performing effectively in OD prediction. Thus, we present a novel multichannel hypergraph convolutional neural network (MC-HGCN) to overcome the above challenges. The model innovatively extracts distinctive features from the channels of inflows, outflows, and OD flows, to conquer the high sparsity in OD matrices. High-order spatial proximity within regions and OD chains are then modeled by the three adjacency hypergraphs constructed for the above three channels. In each adjacency hypergraph, multiple neighboring stations are treated as vertices, while multiple OD pairs constitute hyperedges. These structures are learned by hypergraph convolutional networks for latent spatial correlations. On this basis, a semantic hypergraph is created for the OD channel to model OD distributions lacking spatial proximity but sharing semantic correlations. It utilizes hyperedges to represent semantic correlations among OD pairs whose origins and destinations both possess similar point-of-interest (POI) functions, before learned by a hypergraph convolutional network (HGCN). Both spatial and semantic correlations intrinsic to OD flows are accordingly captured and embedded into a gated recurrent unit (GRU) to unveil hidden spatiotemporal dependencies among OD distributions. These embedded correlations are ultimately integrated through a multichannel fusion module to enhance the prediction of OD flows, even for minor ones. Our model is validated through experiments on three public datasets, demonstrating its robust performances across long and short time steps. Findings may contribute theoretical insights for practical applications, such as coordinating traffic scheduling or route planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
22秒前
andrele应助科研通管家采纳,获得10
22秒前
兜兜完成签到,获得积分10
37秒前
Xulun完成签到,获得积分10
44秒前
科研通AI5应助Demi_Ming采纳,获得10
58秒前
tree完成签到,获得积分10
1分钟前
小蜗牛完成签到 ,获得积分10
1分钟前
Demi_Ming发布了新的文献求助10
2分钟前
健康的大船完成签到 ,获得积分10
2分钟前
3分钟前
陈富贵完成签到 ,获得积分10
3分钟前
janice发布了新的文献求助10
3分钟前
janice完成签到,获得积分10
3分钟前
lhq发布了新的文献求助30
3分钟前
天天快乐应助皮皮蟹采纳,获得10
3分钟前
3分钟前
皮皮蟹发布了新的文献求助10
3分钟前
lhq完成签到,获得积分10
3分钟前
5分钟前
5分钟前
打打应助陶醉的手套采纳,获得30
5分钟前
袁粪到了完成签到 ,获得积分10
7分钟前
科研通AI5应助jyy采纳,获得10
8分钟前
orixero应助活泼的背包采纳,获得10
9分钟前
活泼的背包完成签到,获得积分10
9分钟前
9分钟前
SciGPT应助Tiger采纳,获得10
9分钟前
9分钟前
9分钟前
9分钟前
jyy发布了新的文献求助10
9分钟前
9分钟前
9分钟前
Tiger发布了新的文献求助10
9分钟前
andrele应助科研通管家采纳,获得10
10分钟前
CipherSage应助科研通管家采纳,获得10
10分钟前
末世发布了新的文献求助10
10分钟前
lixuebin完成签到 ,获得积分10
10分钟前
Cathy完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804187
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341092
捐赠科研通 3065173
什么是DOI,文献DOI怎么找? 1682960
邀请新用户注册赠送积分活动 808557
科研通“疑难数据库(出版商)”最低求助积分说明 764600