AAUConvNeXt: Enhancing Crop Lodging Segmentation with Optimized Deep Learning Architectures

分割 卷积神经网络 深度学习 人工智能 生产(经济) 计算机科学 机器学习 图像分割 农业工程 人工神经网络 农业 作物产量 农学 生物 工程类 宏观经济学 经济 生态学
作者
Panli Zhang,Longhui Niu,Mengchen Cai,Hongxu Chen,Xiaobo Sun
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:6 被引量:1
标识
DOI:10.34133/plantphenomics.0182
摘要

Rice lodging, a phenomenon precipitated by environmental factors or crop characteristics, presents a substantial challenge in agricultural production, notably impacting yield prediction and disaster assessment. Despite that the application of conventional methodologies like visual assessment, mathematical models, and satellite remote sensing technologies has been employed in the segmentation of crop lodging, these approaches are still constrained in precision, immediacy, and capacity for large-scale evaluation. This study introduces an innovative convolutional neural network architecture, AFOA + APOM + UConvNeXt, that integrates intelligent optimization algorithms for automatic selection of optimal network parameters, thereby enhancing the accuracy and efficiency of crop lodging segmentation. The proposed model, empirically validated, outperforms recent state-of-the-art models in crop lodging segmentation, demonstrating higher accuracy, lower computational resource requirements, and greater efficiency, thereby markedly reducing the cost of segmentation. In addition, we investigated the segmentation on half lodging rice, and the results indicate that the model exhibits commendable performance on the half lodging dataset. This outcome holds significant implications for the prediction of rice lodging trends. The fusion of deep learning with intelligent optimization algorithms in this study offers a new effective tool for crop lodging monitoring in agricultural production, providing strong technical support for accurate crop phenotypic information extraction, and is expected to play a significant role in agricultural production practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu发布了新的文献求助10
刚刚
生动的莞完成签到,获得积分10
2秒前
木木发布了新的文献求助10
2秒前
2秒前
2秒前
uncle发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
十沐乐安完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
完美世界应助Ellie采纳,获得10
6秒前
6秒前
乂领域应助蔡从安采纳,获得10
7秒前
8秒前
8秒前
liu123发布了新的文献求助10
9秒前
李思怡发布了新的文献求助10
9秒前
小羊佳佳发布了新的文献求助10
9秒前
万能图书馆应助木木采纳,获得10
10秒前
十沐乐安发布了新的文献求助10
10秒前
维拉帕米发布了新的文献求助30
11秒前
三两三完成签到,获得积分20
11秒前
11秒前
Ss发布了新的文献求助10
12秒前
DDDDD完成签到,获得积分10
12秒前
hhhr完成签到,获得积分10
13秒前
斯文败类应助casino采纳,获得10
14秒前
14秒前
啦啦啦啦完成签到,获得积分10
14秒前
14秒前
Yvonne完成签到,获得积分10
14秒前
羊笨笨完成签到 ,获得积分10
15秒前
16秒前
16秒前
Ellie完成签到,获得积分10
16秒前
豪士赋给豪士赋的求助进行了留言
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478961
求助须知:如何正确求助?哪些是违规求助? 3936492
关于积分的说明 12212301
捐赠科研通 3591121
什么是DOI,文献DOI怎么找? 1974719
邀请新用户注册赠送积分活动 1011990
科研通“疑难数据库(出版商)”最低求助积分说明 905415