Machine Learning-Assisted Design of Advanced Polymeric Materials

计算机科学 代表(政治) 财产(哲学) 化学信息学 钥匙(锁) 过程(计算) 大数据 吞吐量 机器学习 组分(热力学) 人工智能 数据挖掘 化学 哲学 政治学 无线 法学 计算机安全 计算化学 物理 操作系统 认识论 热力学 政治 电信
作者
Liang Gao,Jiaping Lin,Liquan Wang,Lei Du
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (5): 571-584 被引量:68
标识
DOI:10.1021/accountsmr.3c00288
摘要

ConspectusPolymeric material research is encountering a new paradigm driven by machine learning (ML) and big data. The ML-assisted design has proven to be a successful approach for designing novel high-performance polymeric materials. This goal is mainly achieved through the following procedure: structure representation and database construction, establishment of a ML-based property prediction model, virtual design and high-throughput screening. The key to this approach lies in training ML models that delineate structure–property relationships based on available polymer data (e.g., structure, component, and property data), enabling the screening of promising polymers that satisfy the targeted property requirements. However, the relative scarcity of high-quality polymer data and the complex polymeric multiscale structure–property relationships pose challenges for this ML-assisted design method, such as data and modeling challenges.In this Account, we summarize the state-of-the-art advancements concerning the ML-assisted design of polymeric materials. Regarding structure representation and database construction, the digital representations of polymers are the predominant methods in cheminformatics along with some newly developed methods that integrate the polymeric multiscale structure characteristics. When establishing a ML-based property prediction model, the key is choosing and optimizing ML models to attain high-precision predictions across a vast chemical structure space. Advanced ML algorithms, such as transfer learning and multitask learning, have been utilized to address the data and modeling challenges. During the ML-assisted screening process, by defining and combining polymer genes, virtual polymer candidates are generated, and subsequently, their properties are predicted and high-throughput screened using ML property prediction models. Finally, the promising polymers identified through this approach are verified by computer simulations and experiments.We provide an overview of our recent efforts toward developing ML-assisted design approaches for discovering advanced polymeric materials and emphasize the intricate nature of polymer structural design. To well describe the multiscale structures of polymers, new structure representation methods, such as polymer fingerprint and cross-linking descriptors, were developed. Moreover, a multifidelity learning method was proposed to leverage the multisource isomerous polymer data from experiments and simulations. Additionally, graph neural networks and Bayesian optimization methods have been developed and applied for predicting polymer properties as well as designing polymer structures and compositions.Finally, we identify the current challenges and point out the development directions in this emerging field. It is highly desirable to establish new structure representation and advanced ML modeling methods for polymeric materials, particularly when constructing polymer large models based on chemical language. Through this Account, we seek to stimulate further interest and foster active collaborations for developing ML-assisted design approaches and realizing the innovation of advanced polymeric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助清新采纳,获得10
刚刚
刚刚
刚刚
1秒前
小左发布了新的文献求助30
2秒前
桐夜完成签到 ,获得积分10
2秒前
2秒前
大个应助酷酷的笔记本采纳,获得10
2秒前
sober完成签到,获得积分10
3秒前
3秒前
Wefaily应助先锋老刘001采纳,获得10
3秒前
王十发布了新的文献求助30
3秒前
4秒前
5秒前
5秒前
Iuhob完成签到,获得积分10
5秒前
5秒前
小二郎应助huaming采纳,获得10
6秒前
Felix发布了新的文献求助10
6秒前
田様应助JustinaLiu采纳,获得10
7秒前
BareBear应助机智乐驹采纳,获得10
7秒前
我是老大应助炜博采纳,获得10
7秒前
不知完成签到 ,获得积分10
7秒前
Ion发布了新的文献求助10
7秒前
7秒前
小刘顺利毕业完成签到,获得积分10
7秒前
zhanhunliu应助尺八采纳,获得10
7秒前
8秒前
PP发布了新的文献求助10
8秒前
科研通AI6应助Tamarin采纳,获得10
8秒前
丑八怪发布了新的文献求助10
8秒前
酷波er应助日常卖命采纳,获得10
8秒前
8秒前
9秒前
9秒前
愉快涵菱发布了新的文献求助10
9秒前
史萌发布了新的文献求助10
9秒前
fang应助hiccup采纳,获得20
10秒前
小二郎应助要强的元枫采纳,获得10
10秒前
enen发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644