已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Assisted Design of Advanced Polymeric Materials

计算机科学 代表(政治) 财产(哲学) 化学信息学 钥匙(锁) 过程(计算) 大数据 吞吐量 机器学习 组分(热力学) 人工智能 数据挖掘 化学 电信 哲学 物理 计算化学 计算机安全 热力学 认识论 政治 政治学 法学 无线 操作系统
作者
Liang Gao,Jiaping Lin,Liquan Wang,Lei Du
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (5): 571-584 被引量:22
标识
DOI:10.1021/accountsmr.3c00288
摘要

ConspectusPolymeric material research is encountering a new paradigm driven by machine learning (ML) and big data. The ML-assisted design has proven to be a successful approach for designing novel high-performance polymeric materials. This goal is mainly achieved through the following procedure: structure representation and database construction, establishment of a ML-based property prediction model, virtual design and high-throughput screening. The key to this approach lies in training ML models that delineate structure–property relationships based on available polymer data (e.g., structure, component, and property data), enabling the screening of promising polymers that satisfy the targeted property requirements. However, the relative scarcity of high-quality polymer data and the complex polymeric multiscale structure–property relationships pose challenges for this ML-assisted design method, such as data and modeling challenges.In this Account, we summarize the state-of-the-art advancements concerning the ML-assisted design of polymeric materials. Regarding structure representation and database construction, the digital representations of polymers are the predominant methods in cheminformatics along with some newly developed methods that integrate the polymeric multiscale structure characteristics. When establishing a ML-based property prediction model, the key is choosing and optimizing ML models to attain high-precision predictions across a vast chemical structure space. Advanced ML algorithms, such as transfer learning and multitask learning, have been utilized to address the data and modeling challenges. During the ML-assisted screening process, by defining and combining polymer genes, virtual polymer candidates are generated, and subsequently, their properties are predicted and high-throughput screened using ML property prediction models. Finally, the promising polymers identified through this approach are verified by computer simulations and experiments.We provide an overview of our recent efforts toward developing ML-assisted design approaches for discovering advanced polymeric materials and emphasize the intricate nature of polymer structural design. To well describe the multiscale structures of polymers, new structure representation methods, such as polymer fingerprint and cross-linking descriptors, were developed. Moreover, a multifidelity learning method was proposed to leverage the multisource isomerous polymer data from experiments and simulations. Additionally, graph neural networks and Bayesian optimization methods have been developed and applied for predicting polymer properties as well as designing polymer structures and compositions.Finally, we identify the current challenges and point out the development directions in this emerging field. It is highly desirable to establish new structure representation and advanced ML modeling methods for polymeric materials, particularly when constructing polymer large models based on chemical language. Through this Account, we seek to stimulate further interest and foster active collaborations for developing ML-assisted design approaches and realizing the innovation of advanced polymeric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛八先生完成签到,获得积分10
1秒前
3秒前
水若琳完成签到 ,获得积分10
3秒前
4秒前
哔噗哔噗完成签到,获得积分10
7秒前
clown发布了新的文献求助10
8秒前
cxx完成签到 ,获得积分10
9秒前
刘五十七完成签到 ,获得积分10
9秒前
LIU完成签到 ,获得积分10
10秒前
牙线棒棒哒完成签到 ,获得积分10
13秒前
八合一完成签到,获得积分20
13秒前
大笨鹅之家完成签到 ,获得积分10
14秒前
El完成签到,获得积分10
14秒前
AXLL完成签到 ,获得积分10
15秒前
小米的稻田完成签到 ,获得积分10
15秒前
MMP应助wei采纳,获得50
16秒前
赘婿应助clown采纳,获得10
16秒前
小丸子完成签到 ,获得积分10
16秒前
ZZzz完成签到 ,获得积分10
17秒前
酸菜完成签到,获得积分10
17秒前
团宝妞宝完成签到,获得积分10
17秒前
快乐修勾完成签到 ,获得积分10
18秒前
霸气的匕完成签到 ,获得积分10
18秒前
19秒前
20秒前
山猫大王完成签到 ,获得积分10
21秒前
21秒前
Chen完成签到 ,获得积分10
22秒前
小二郎应助坚定的慕卉采纳,获得10
23秒前
24秒前
hsk发布了新的文献求助10
24秒前
ZCYBEYOND完成签到 ,获得积分10
26秒前
董思雨发布了新的文献求助10
26秒前
可爱又夏发布了新的文献求助10
28秒前
28秒前
今后应助deway采纳,获得10
29秒前
程宇发布了新的文献求助80
29秒前
SciGPT应助hsk采纳,获得10
29秒前
30秒前
斑鸠完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994675
求助须知:如何正确求助?哪些是违规求助? 3534926
关于积分的说明 11266808
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749