Exploring the High-Entropy Oxide Composition Space: Insights through Comparing Experimental with Theoretical Models for the Oxygen Evolution Reaction

催化作用 密度泛函理论 析氧 化学 热力学 材料科学 物理化学 计算化学 物理 电化学 生物化学 电极
作者
Vladislav A. Mints,Katrine L. Svane,Jan Rossmeisl,Matthias Arenz
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6936-6944 被引量:13
标识
DOI:10.1021/acscatal.3c05915
摘要

The oxygen evolution reaction (OER) is key for the transition to a hydrogen-based energy economy. The observed activity of the OER catalysts arises from the combined effects of surface area, intrinsic activity, and stability. Therefore, alloys provide an effective platform to search for catalysts that balance these factors. In particular, high-entropy oxides provide a vast material composition space that could contain catalysts with optimal OER performance. In this work, the OER performance of the AuIrOsPdPtReRhRu composition space was modeled using an experimentally obtained dataset of 350 nanoparticles. This machine-learned model based on experimental data found the optimal catalyst to be a mixture of AuIrOsPdRu. However, as a "black-box model", it cannot explain the underlying chemistry. Therefore, density functional theory (DFT) calculations were performed to provide a complementary theoretical model with defined assumptions and, hence, a physical interpretation through comparison with the experimental model. The DFT calculations suggest that the majority of the activity originates from Ru and Ir active sites and that the addition of Pd improves the performance of these sites. However, the DFT calculation did not find the experimentally observed beneficial effects of Au and Os. Therefore, we hypothesize that the Os contributed to the performance of the tested catalysts by roughening the surface, whereas Au fulfilled the role of a structural support. Overall, it is demonstrated how machine learning can help accelerate catalyst discovery, and combining machine-learned models obtained from experimental data with models based on DFT calculations can provide important insights into the complex chemistry of OER catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡胡完成签到 ,获得积分10
刚刚
刚刚
ZXF应助小慧儿采纳,获得10
1秒前
诚心的傲芙完成签到,获得积分10
1秒前
客官们帮帮忙完成签到,获得积分10
1秒前
EvaHo完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
木九黎完成签到,获得积分10
4秒前
等待春天发布了新的文献求助10
5秒前
5秒前
Owen应助平淡的洪纲采纳,获得10
5秒前
5秒前
快乐友灵完成签到,获得积分10
6秒前
李健应助kitten采纳,获得10
6秒前
Jasper应助研友_Z6kNA8采纳,获得10
6秒前
哎呦喂发布了新的文献求助50
6秒前
SweetJoy应助科研通管家采纳,获得10
6秒前
大雨发布了新的文献求助10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
liu应助科研通管家采纳,获得10
7秒前
7秒前
cccdida应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
清风完成签到,获得积分10
8秒前
jnshen完成签到 ,获得积分10
8秒前
YuanLi发布了新的文献求助30
8秒前
拉斐尔217完成签到,获得积分10
8秒前
totoro完成签到,获得积分10
8秒前
9秒前
阔达以山完成签到,获得积分10
9秒前
jixuchance完成签到,获得积分10
9秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4093339
求助须知:如何正确求助?哪些是违规求助? 3632045
关于积分的说明 11511743
捐赠科研通 3342780
什么是DOI,文献DOI怎么找? 1837309
邀请新用户注册赠送积分活动 905012
科研通“疑难数据库(出版商)”最低求助积分说明 822852