Functional Enhancement of Flavin-Containing Monooxygenase through Machine Learning Methodology

黄素组 单加氧酶 化学 催化作用 密度泛函理论 组合化学 计算机科学 计算化学 生物化学 细胞色素P450
作者
Takuma Matsushita,Shinji Kishimoto,Kodai Hara,Hiroshi Hashimoto,Hideki Yamaguchi,Yutaka Saitô,Kenji Watanabe
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 6945-6951 被引量:3
标识
DOI:10.1021/acscatal.4c00826
摘要

Directed evolution of enzymes often fails to obtain desirable variants because of the difficulty in exploring a huge sequence space. To obtain active variants from a very limited number of variants available at the laboratory scale, machine learning (ML)-guided engineering of enzymes is becoming an attractive methodology. However, as far as we know, there is no example of an ML-guided functional modification of flavin-containing monooxygenase (FMO). FMOs are known to catalyze a variety of oxidative reactions and are involved in the biosynthesis of many natural products (NPs). Therefore, it is expected that the ML-guided functional enhancement of FMO can contribute to the efficient development of NP derivatives. In this research, we focused on p-hydroxybenzoate hydroxylase (PHBH), a model FMO, and altered only four amino acid residues around the substrate binding site. ML models were trained with a small initial library covering only approximately 0.1% of the whole sequence space, and the ML-predicted second library was enriched with active variants. The variant with the highest activity in the second library was PHBH-MWNL (V47M, W185, L199N, and L210), whose activity was more than 100 times that of the wild-type PHBH. For elucidation of the mechanism of the observed activity enhancement, the crystal structure of PHBH-MWNL in complex with 4-hydroxy-3-methyl benzoic acid was determined. In the PHBH-MWNL crystal structure, the missing water molecule WAT2 was observed due to N199 hydrogen-bonding to WAT2, indicating that the L199N mutation contributed to the observed functional improvement by stabilizing the proton relay network proposed to be important in catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
明亮的智宸完成签到,获得积分10
5秒前
万盼晴发布了新的文献求助10
7秒前
7秒前
Jiaowen完成签到,获得积分10
7秒前
阿司匹林发布了新的文献求助10
8秒前
铁柱xh完成签到 ,获得积分10
9秒前
科研顺利完成签到,获得积分10
9秒前
羽羽发布了新的文献求助10
10秒前
10秒前
wwww完成签到 ,获得积分10
11秒前
科研通AI2S应助清水采纳,获得10
13秒前
撒西不理完成签到,获得积分10
15秒前
羽羽完成签到,获得积分20
18秒前
万盼晴完成签到,获得积分10
22秒前
单于无极应助657采纳,获得10
24秒前
27秒前
安详的未来完成签到,获得积分10
29秒前
JamesPei应助jbtjht采纳,获得10
31秒前
彬子发布了新的文献求助10
31秒前
Lynn完成签到,获得积分10
35秒前
40秒前
科研通AI5应助苏素肃采纳,获得10
40秒前
笑笑完成签到 ,获得积分10
40秒前
44秒前
杨惊蛰发布了新的文献求助10
49秒前
49秒前
50秒前
华仔应助小四喜采纳,获得10
50秒前
任志政完成签到 ,获得积分10
53秒前
磊大彪发布了新的文献求助10
55秒前
天才莫拉尔完成签到,获得积分10
55秒前
淡然的衣完成签到,获得积分10
56秒前
爆米花应助青栀采纳,获得10
1分钟前
小碗完成签到 ,获得积分10
1分钟前
淡然的衣发布了新的文献求助10
1分钟前
xiaoyiyaxin完成签到 ,获得积分10
1分钟前
1分钟前
12334完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781324
求助须知:如何正确求助?哪些是违规求助? 3326844
关于积分的说明 10228534
捐赠科研通 3041858
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751