计算机科学
可转让性
一般化
桥(图论)
比例(比率)
机器学习
人工智能
原子间势
密度泛函理论
计算科学
分子动力学
理论计算机科学
计算化学
化学
物理
数学
量子力学
医学
数学分析
罗伊特
内科学
作者
Guanjie Wang,Changrui Wang,Xuanguang Zhang,Zefeng Li,Jianzhong Zhou,Zhimei Sun
出处
期刊:iScience
[Elsevier]
日期:2024-04-04
卷期号:27 (5): 109673-109673
被引量:82
标识
DOI:10.1016/j.isci.2024.109673
摘要
Machine learning interatomic potential (MLIP) overcomes the challenges of high computational costs in density-functional theory and the relatively low accuracy in classical large-scale molecular dynamics, facilitating more efficient and precise simulations in materials research and design. In this review, the current state of the four essential stages of MLIP is discussed, including data generation methods, material structure descriptors, six unique machine learning algorithms, and available software. Furthermore, the applications of MLIP in various fields are investigated, notably in phase-change memory materials, structure searching, material properties predicting, and the pre-trained universal models. Eventually, the future perspectives, consisting of standard datasets, transferability, generalization, and trade-off between accuracy and complexity in MLIPs, are reported.
科研通智能强力驱动
Strongly Powered by AbleSci AI