清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring the Associations between Alzheimer’s Disease and GBM Mediated by Microglia Based on Network Analysis

小胶质细胞 生物 阿尔茨海默病 疾病 神经科学 医学 免疫学 病理 炎症
作者
Chao Zhang,Xiaoling Zhong,Lynn Yi,Zhenqun Zhao,Y. Zhang,Gui‐Shan Tan,Y. Zhang,Y. Zhang,Ye Xu,Ni Wu
出处
期刊:JPAD [Springer Science+Business Media]
被引量:1
标识
DOI:10.14283/jpad.2023.23
摘要

Previous studies have revealed that there existed epidemic associations between Alzheimer’s disease (AD) and many types of tumors, however, the inner biological mechanism connecting these diseases was not clear currently. In this study, we explored the transcriptome associations between AD and glioblastoma multiforme (GBM) that both originate in the brain, using microglia as a bridge, from gene and network levels. Firstly, we extracted human scRNA sequencing datasets from Gene Expression Omnibus (GEO) database, and identified differentially expressed genes within microglia after cell annotation. It was observed that there were 11 common genes shared by AD and GBM dys-regulated genes. Next, we utilized DIAMOnD and Flow Centrality algorithms to identify microglia modules and mediating pathways connecting these two diseases based on global network topology. Among these candidate pathways, the mediating genes FURIN and BACE1 (from SPIKN5 to CSNK1A1) were not only related to the formation of amyloid beta plaques that accumulate in the brain of AD patients, but also involved in cancer biology. Furthermore, the biological explorations of mediating pathways connecting AD and GBM modules reveal inflammatory response, lipid metabolism disorder, and cell proliferation terms. Finally, novel signatures for early AD detection as well as risk models for glioma prognosis were identified based on mediating genes involved in these pathways. In conclusion, this study provided a novel network-based strategy for exploring microglia mediation between AD and GBM and identified candidate signatures for disease detection and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noah完成签到 ,获得积分0
刚刚
ewind完成签到 ,获得积分10
6秒前
天青色等烟雨完成签到 ,获得积分10
10秒前
谢陈完成签到 ,获得积分10
16秒前
20秒前
七人七发布了新的文献求助10
23秒前
现代完成签到,获得积分10
27秒前
32秒前
Akim应助科研通管家采纳,获得10
38秒前
38秒前
科研通AI5应助Jasmine采纳,获得10
40秒前
xuuuuu完成签到,获得积分10
42秒前
cugwzr完成签到,获得积分10
43秒前
54秒前
乐观海云完成签到 ,获得积分10
1分钟前
Lexi完成签到 ,获得积分10
1分钟前
1分钟前
我有一只羊完成签到,获得积分10
1分钟前
1分钟前
老木虫发布了新的文献求助10
1分钟前
hadfunsix完成签到 ,获得积分10
1分钟前
guhao完成签到 ,获得积分10
1分钟前
1分钟前
艳艳宝完成签到 ,获得积分10
1分钟前
紫金之巅完成签到 ,获得积分10
1分钟前
唐瑚芦完成签到 ,获得积分10
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
庄怀逸完成签到 ,获得积分10
2分钟前
2分钟前
典雅三颜完成签到 ,获得积分10
2分钟前
优秀的尔风完成签到,获得积分10
2分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475500
捐赠科研通 3092653
什么是DOI,文献DOI怎么找? 1702254
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101