亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Comparative Evaluation of Valine-Leucine Amino Acid Impact for Disease Identification using Fuzzy C-Means Clustering and KNN Classification

缬氨酸 亮氨酸 氨基酸 聚类分析 机器学习 计算机科学 相关性(法律) 鉴定(生物学) 疾病 模糊逻辑 人工智能 医学 数据挖掘 生物 生物化学 病理 政治学 法学 植物
作者
S. Sasikala,K. Sharmila
标识
DOI:10.1109/smart55829.2022.10046795
摘要

Amino acids are essential components that are necessitated for the human body, and contributes in balancing the health of an individual. Nonetheless, their proportion either higher or lesser can cause health gremlins that can be detrimental. The foremost health problems stems in the form of heart ailments, diabetes and bone relevant issues. While many studies have highlighted the rudimentary processing techniques, and subsequently identified the accuracy measures with respect to classification, the neoteric times have evinced that lack of exercise, and the levels of stress that can be cardinal factors in escalating the disease triggering cells in the human body. With the emphasis of Leucine and Valine amino acids which are specifically analyzed in this study, the importance to stay healthy, and the changes observed with the quantity change in the amino acids provide a wholistic picture of sustainable living. The previous research pertaining to health gremlins and medical data mining have always lacked in understanding the consumption of amino acids, but have focussed to render more priority to the stratification of diseases. Thus, circumventing to analyse the root-cause of any health issue that an individual can potently be challenged with. Thus, this paper proposes the analysis of disease data processing in relevance to heart attack and osteoporosis from valine and leucine approximations. This study takes into consideration an algorithmic approach of processing the valine-leucine data as signals, to explicitly filter and classify them based on the amino acid and corporeal value count of the individual. The results in procuring the classification accuracy of an individual depends on the muscle-vein thickness, Total Cholesterol count from the corporeal parameters and the valine-leucine levels to determine the triggering of blocks and fragility of muscles in the human body. The methodological approach of entailingPeak Signal-based saddle mitigation technique incorporated with fuzzy-C Means clustering, and KNN classification is used to identify the diseases in an individual. The simulations thus carried out, rendered successful results in MATLAB GUI, therebyaiding to provide an explicit comprehension of the occurrence of heart attack and osteoporosis in accordance to the consumption levels of the valine-leucine amino acids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助小郭子采纳,获得10
4秒前
12秒前
ypyue完成签到,获得积分10
15秒前
15秒前
jeff发布了新的文献求助10
17秒前
ypyue发布了新的文献求助10
19秒前
ffl完成签到 ,获得积分10
20秒前
我是老大应助有人采纳,获得30
23秒前
今后应助ypyue采纳,获得10
35秒前
科目三应助Howeveran采纳,获得10
40秒前
科研通AI5应助番番采纳,获得10
47秒前
51秒前
zjx完成签到,获得积分10
52秒前
科研通AI5应助可靠的寒风采纳,获得10
55秒前
55秒前
Howeveran发布了新的文献求助10
59秒前
1分钟前
1分钟前
CC发布了新的文献求助10
1分钟前
preepero发布了新的文献求助10
1分钟前
preepero完成签到,获得积分10
1分钟前
zzhang完成签到,获得积分20
1分钟前
脑洞疼应助CC采纳,获得10
1分钟前
爱莉希雅完成签到 ,获得积分10
1分钟前
科研通AI5应助zzhang采纳,获得10
1分钟前
1分钟前
盐植物完成签到,获得积分10
1分钟前
四氧化三铁完成签到,获得积分10
1分钟前
hmf1995完成签到 ,获得积分10
2分钟前
芝麻完成签到,获得积分0
2分钟前
鱼块完成签到 ,获得积分10
2分钟前
羽生结弦的馨馨完成签到,获得积分10
2分钟前
Camelia完成签到,获得积分10
2分钟前
NagatoYuki完成签到,获得积分10
2分钟前
2分钟前
bingbing完成签到,获得积分10
2分钟前
Lancet发布了新的文献求助10
2分钟前
浅晨发布了新的文献求助10
2分钟前
2分钟前
Ephemeral完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333675
关于积分的说明 10262958
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673602
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760504