Improved Neurophysiological Process Imaging Through Optimization of Kalman Filter Initial Conditions

初始化 计算机科学 卡尔曼滤波器 脑磁图 神经生理学 滤波器(信号处理) 最优化问题 算法 人工智能 计算机视觉 脑电图 心理学 精神科 神经科学 生物 程序设计语言
作者
Yun Zhao,Phuc Luong,Simon Teshuva,Andria Pelentritou,Woods William,David T. J. Liley,Daniel F. Schmidt,Mario Boley,Levin Kuhlmann
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (05) 被引量:2
标识
DOI:10.1142/s0129065723500247
摘要

Recent work presented a framework for space-time-resolved neurophysiological process imaging that augments existing electromagnetic source imaging techniques. In particular, a nonlinear Analytic Kalman filter (AKF) has been developed to efficiently infer the states and parameters of neural mass models believed to underlie the generation of electromagnetic source currents. Unfortunately, as the initialization determines the performance of the Kalman filter, and the ground truth is typically unavailable for initialization, this framework might produce suboptimal results unless significant effort is spent on tuning the initialization. Notably, the relation between the initialization and overall filter performance is only given implicitly and is expensive to evaluate; implying that conventional optimization techniques, e.g. gradient or sampling based, are inapplicable. To address this problem, a novel efficient framework based on blackbox optimization has been developed to find the optimal initialization by reducing the signal prediction error. Multiple state-of-the-art optimization methods were compared and distinctively, Gaussian process optimization decreased the objective function by 82.1% and parameter estimation error by 62.5% on average with the simulation data compared to no optimization applied. The framework took only 1.6[Formula: see text]h and reduced the objective function by an average of 13.2% on 3.75[Formula: see text]min 4714-source channel magnetoencephalography data. This yields an improved method of neurophysiological process imaging that can be used to uncover complex underpinnings of brain dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的西装完成签到 ,获得积分10
1秒前
eeupy发布了新的文献求助10
1秒前
1秒前
3211应助BUG采纳,获得10
1秒前
2秒前
2秒前
王三歲完成签到,获得积分10
2秒前
冬凛发布了新的文献求助10
3秒前
4秒前
6秒前
serendipity完成签到,获得积分10
6秒前
7秒前
顾矜应助霸气的凝竹采纳,获得10
7秒前
难过忆山发布了新的文献求助10
8秒前
9秒前
蛋挞发布了新的文献求助10
9秒前
sid发布了新的文献求助10
9秒前
哎嘤斯坦完成签到,获得积分10
10秒前
心灵美的修洁完成签到 ,获得积分10
11秒前
11秒前
小鼠喂了吗完成签到,获得积分10
12秒前
12秒前
点点完成签到 ,获得积分10
13秒前
13秒前
13秒前
mugglea完成签到 ,获得积分10
14秒前
酷波er应助sumugeng采纳,获得10
14秒前
蛋挞完成签到,获得积分10
15秒前
Txf发布了新的文献求助10
15秒前
难过忆山完成签到,获得积分10
16秒前
Stove完成签到,获得积分10
16秒前
眼睛大的小熊猫完成签到,获得积分10
16秒前
李爱国应助甜甜莫言采纳,获得10
17秒前
研友_kngjrL发布了新的文献求助30
17秒前
Ooo发布了新的文献求助10
18秒前
FashionBoy应助HUSHIYI采纳,获得10
19秒前
fzzf完成签到,获得积分10
19秒前
天天快乐应助科研通管家采纳,获得30
19秒前
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960