已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Emotion Recognition in Conversation Based on a Dynamic Complementary Graph Convolutional Network

话语 对话 判决 自然语言处理 图形 计算机科学 冗余(工程) 卷积神经网络 交互信息 语音识别 人工智能 理论计算机科学 语言学 哲学 统计 数学 操作系统
作者
Zhenyu Yang,Xiaoyang Li,Yuhu Cheng,Tong Zhang,Xuesong Wang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1567-1579 被引量:2
标识
DOI:10.1109/taffc.2024.3360979
摘要

Emotion recognition in conversation (ERC) is a widely used technology in both affective dialogue bots and dialogue recommendation scenarios, where motivating a system to correctly recognize human emotions is crucial. Uncovering as much contextual information as possible with a limited amount of dialogue information is essential for eventually identifying the correct emotion of each sentence. The integration of contextual information using the existing approaches often results in inadequate access to information or information redundancy. Deeply integrating the different knowledge behind utterances is also difficult. Therefore, to address these problems, we propose a dynamic complementary graph convolutional network (DCGCN) for conversational emotion recognition. Our approach uses commonsense knowledge to complement the contextual information contained in utterances and enrich the extracted conversation information. We creatively propose the concept of utterance density to prevent redundancy and the loss of utterance information in context-dependent contextual information modeling cases. An utterance dependency structure is dynamically determined by the utterance density, and the contextual information is fully integrated into each sentence representation. We evaluate our proposed model in extensive experiments conducted on four public benchmark datasets that are commonly used for ERC. The results demonstrate the effectiveness of the DCGCN, which achieves competitive results in terms of well-known evaluation metrics. Our code is available at https://github.com/Tars-is-a-robot/Conversational-emotion-recognition.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助运动医学阿澜采纳,获得10
1秒前
科研通AI5应助想去电影院采纳,获得10
1秒前
小蘑菇应助miluren采纳,获得10
2秒前
大河悠久发布了新的文献求助10
4秒前
5秒前
6秒前
科研通AI5应助苏苏苏采纳,获得10
7秒前
8秒前
8秒前
ding应助SMULJL采纳,获得10
8秒前
9秒前
petrichor发布了新的文献求助10
10秒前
恒星的恒心完成签到 ,获得积分10
11秒前
back you up应助舒适路人采纳,获得30
11秒前
13秒前
14秒前
15秒前
15秒前
16秒前
科研通AI5应助江莱采纳,获得10
16秒前
18秒前
zhengzehong发布了新的文献求助10
18秒前
19秒前
miluren发布了新的文献求助10
24秒前
所所应助wise111采纳,获得10
24秒前
Thien应助小小手冰凉采纳,获得10
26秒前
科研通AI5应助San采纳,获得10
28秒前
奋斗忆安完成签到,获得积分20
29秒前
29秒前
dt关注了科研通微信公众号
33秒前
xixi789完成签到,获得积分10
34秒前
daisy给苏素肃的求助进行了留言
37秒前
向日葵的微笑完成签到,获得积分10
38秒前
39秒前
39秒前
39秒前
40秒前
41秒前
不安的盼山完成签到 ,获得积分20
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792373
求助须知:如何正确求助?哪些是违规求助? 3336550
关于积分的说明 10281350
捐赠科研通 3053280
什么是DOI,文献DOI怎么找? 1675560
邀请新用户注册赠送积分活动 803529
科研通“疑难数据库(出版商)”最低求助积分说明 761436