Comprehensive characterization and detection of nut allergens in bakery foods using Q–TOF mass spectrometry and bioinformatics

质谱法 检出限 化学 色谱法 食品科学 串联质谱法 食物过敏原 过敏原 生物 过敏 免疫学
作者
Daokun Xu,Haolun Huang,Zhen Liu,Yumei Wang,Liu Qinan,Xingyu Jiang,Jun Yang,Rui Ling
出处
期刊:Food Quality and Safety [Oxford University Press]
标识
DOI:10.1093/fqsafe/fyad061
摘要

Abstract Food allergy is a growing health issue worldwide and the demand for sensitive, robust and high throughput analytical methods is rising. In recent years, mass spectrometry–based methods have been establishing its role in multiple food allergen detection. In the present study, a novel method was developed for the simultaneous detection of almond, cashew, peanut and walnut allergens in bakery foods using liquid chromatography–mass spectrometry. Protein unique to theses four ingredients were extracted, followed by trypsin digestion, quadrupole time–of–flight (Q–TOF) mass spectrometry and bioinformatics analysis. Raw data were processed by de–novo sequencing module plus PEAKS DB (database search) module of the PEAKs software to screen peptides specific to each nut species. Thermal stability and uniqueness of these candidate peptides were further verified using triple quadrupole mass spectrometry (QQQ–MS) under multiple reaction monitoring (MRM) mode. Each nut species was represented by four peptides, all of which were validated for label–free quantification (LFQ). Calibration curves were constructed with good linearity and correlation coefficient (r2) greater than 0.99. The limits of detection (LODs) were determined to range from 0.11 mg/kg to 0.31 mg/kg, and were compared with the reference doses proposed by Voluntary Incidental Trace Allergen Labelling (VITAL). The recoveries of the developed method in incurred bakery food matrices ranged from 72.5% to 92.1% with relative standard deviations (RSD) of less than 5.2%. Commercial bakery food samples detection confirmed existence of undeclared allergens. In conclusion, this method shed light on the field of qualitative and quantitative detection of trace levels of nut allergens in bakery foods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助翟函采纳,获得10
1秒前
iNk应助lll采纳,获得20
2秒前
3秒前
黄凯发布了新的文献求助10
4秒前
善学以致用应助kk采纳,获得10
5秒前
6秒前
Wecple完成签到 ,获得积分10
6秒前
Hello应助Newky采纳,获得10
7秒前
8秒前
嘉叶完成签到,获得积分10
8秒前
布曲发布了新的文献求助10
9秒前
9秒前
yu完成签到,获得积分10
10秒前
科研通AI2S应助七月采纳,获得10
11秒前
oceandad发布了新的文献求助10
12秒前
JerryLau发布了新的文献求助10
13秒前
17秒前
19秒前
20秒前
ecnu搬砖人完成签到 ,获得积分20
21秒前
孔雀吃披萨完成签到,获得积分10
22秒前
虚幻采枫完成签到,获得积分10
24秒前
HHHHH完成签到,获得积分10
25秒前
Cherish完成签到,获得积分10
28秒前
hiccup发布了新的文献求助10
28秒前
CipherSage应助yyymmma采纳,获得10
29秒前
JerryLau完成签到,获得积分10
30秒前
思源应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得10
34秒前
852应助科研通管家采纳,获得10
34秒前
卡卡西应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
35秒前
后来应助贪玩的醉波采纳,获得10
35秒前
在水一方应助eurus采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
充电宝应助科研通管家采纳,获得10
35秒前
Lucas应助科研通管家采纳,获得20
35秒前
卡卡西应助科研通管家采纳,获得10
36秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801455
求助须知:如何正确求助?哪些是违规求助? 3347202
关于积分的说明 10332572
捐赠科研通 3063494
什么是DOI,文献DOI怎么找? 1681751
邀请新用户注册赠送积分活动 807707
科研通“疑难数据库(出版商)”最低求助积分说明 763864