探地雷达
交叉口(航空)
接口(物质)
计算机科学
图层(电子)
分割
相似性(几何)
掷骰子
雷达
遥感
图像分割
人工智能
模式识别(心理学)
图像(数学)
地质学
工程类
材料科学
电信
统计
数学
气泡
最大气泡压力法
并行计算
航空航天工程
复合材料
作者
Ahmed Elseicy,Mercedes Solla,Alex Alonso-Díaz,Pedro Arias
标识
DOI:10.1109/iwagpr57138.2023.10329101
摘要
Ground penetrating radar (GPR) is a non-destructive test widely used for capturing high-resolution road profiles. Accurate measurements of pavement layer thickness are crucial for evaluating the integrity of both new and existing pavement constructions. However, the automatic interpretation of pavement layer interfaces needs to be improved. This study introduces an automated method to identify pavement layer interfaces using an image segmentation approach based on U-net models. Using real-world data, we evaluated three variants, U-net, attention U-net, and R2U-net. Notably, the R2U-net model yielded a dice similarity coefficient of 95.962% and a mean intersection over union (IoU) of 95.567% in interface detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI