An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings

精确性和召回率 温室 人工智能 帧速率 计算机视觉 计算机科学 数学 模式识别(心理学) 园艺 生物
作者
Yifan Bai,Junzhen Yu,Shuqin Yang,Jifeng Ning
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:237: 1-12 被引量:64
标识
DOI:10.1016/j.biosystemseng.2023.11.008
摘要

Accurately identifying the flowers and fruits of strawberry seedlings in the greenhouse is the key to automated flower and fruit thinning, which can improve efficiency and reduce labour costs in the cultivation. To address the challenges resulting from the small size, similar colour, and overlapping occlusion of strawberry seedling flowers and fruits, this paper proposes a real-time recognition algorithm (Improved YOLO) for accurately identifying them. Firstly, a Swin Transformer prediction head on the high-resolution feature map of YOLO v7 was constructed to better utilise spatial location information to enhance the detection of small target flowers and fruits, and improve the model's spatial interaction and feature extraction ability in scenes with similar colours and overlapping occlusions. Secondly, the GS-ELAN Optimisation Module for neck of network by GSConv was constructed to suppress shallow noise interference from the high-resolution prediction head and mitigate the increase of parameters resulting from high-resolution prediction heads. The experimental results showed that the Precision(P), Recall(R), and mean Average Precision (mAP) of Improved YOLO are 92.6%, 89.6%, and 92.1%. In the meantime, the Improved YOLO algorithm achieves a frame rate of 45 f/s, satisfying the real-time detection requirements. It is 3.2%, 2.7%, and 4.6% higher than the precision, recall, and mAP of YOLOv7, respectively. The accuracy of this model for detecting flowers and fruits was 93.9% and 91.3%, the recall was 93% and 86.3%, and the average precision was 94.7% and 89.5%, respectively. The Improved YOLO algorithm has a high level of robustness and real-time detection performance, allowing it to quickly and accurately identify the flowers and fruits of strawberry seedlings and provides effective support for the automated management of flower and fruit thinning of strawberry seedlings in greenhouse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净水彤发布了新的文献求助10
刚刚
巨星不吃辣完成签到,获得积分10
1秒前
1秒前
苏打发布了新的文献求助10
2秒前
sunny发布了新的文献求助10
2秒前
cqz完成签到,获得积分20
3秒前
3秒前
3秒前
DyG发布了新的文献求助10
4秒前
李沐唅发布了新的文献求助10
4秒前
4秒前
wantong发布了新的文献求助10
4秒前
温暖幻桃发布了新的文献求助10
5秒前
kuny完成签到,获得积分10
5秒前
6秒前
Star-XYX发布了新的文献求助30
6秒前
Distance完成签到,获得积分10
8秒前
缓慢的含双完成签到,获得积分10
8秒前
怡然冰蓝发布了新的文献求助10
8秒前
爆米花应助凉白开采纳,获得10
9秒前
9秒前
大马哈鱼发布了新的文献求助10
9秒前
雷雷发布了新的文献求助10
9秒前
尊敬的高跟鞋完成签到,获得积分10
10秒前
10秒前
奋斗靖仇完成签到 ,获得积分10
10秒前
皮皮发布了新的文献求助10
10秒前
李爱国应助干净水彤采纳,获得10
11秒前
11秒前
林负能发布了新的文献求助10
11秒前
ha完成签到 ,获得积分10
11秒前
白白发布了新的文献求助30
11秒前
深情安青应助斯文奇迹采纳,获得10
11秒前
迷路的十四完成签到,获得积分10
12秒前
12秒前
xiaoxiao完成签到 ,获得积分10
12秒前
123发布了新的文献求助30
12秒前
共享精神应助野火烧采纳,获得10
12秒前
和谐亦瑶完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403373
求助须知:如何正确求助?哪些是违规求助? 3889951
关于积分的说明 12106422
捐赠科研通 3534584
什么是DOI,文献DOI怎么找? 1939503
邀请新用户注册赠送积分活动 980305
科研通“疑难数据库(出版商)”最低求助积分说明 877188