An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings

精确性和召回率 温室 人工智能 帧速率 计算机视觉 计算机科学 数学 模式识别(心理学) 园艺 生物
作者
Yifan Bai,Junzhen Yu,Shuqin Yang,Jifeng Ning
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:237: 1-12 被引量:49
标识
DOI:10.1016/j.biosystemseng.2023.11.008
摘要

Accurately identifying the flowers and fruits of strawberry seedlings in the greenhouse is the key to automated flower and fruit thinning, which can improve efficiency and reduce labour costs in the cultivation. To address the challenges resulting from the small size, similar colour, and overlapping occlusion of strawberry seedling flowers and fruits, this paper proposes a real-time recognition algorithm (Improved YOLO) for accurately identifying them. Firstly, a Swin Transformer prediction head on the high-resolution feature map of YOLO v7 was constructed to better utilise spatial location information to enhance the detection of small target flowers and fruits, and improve the model's spatial interaction and feature extraction ability in scenes with similar colours and overlapping occlusions. Secondly, the GS-ELAN Optimisation Module for neck of network by GSConv was constructed to suppress shallow noise interference from the high-resolution prediction head and mitigate the increase of parameters resulting from high-resolution prediction heads. The experimental results showed that the Precision(P), Recall(R), and mean Average Precision (mAP) of Improved YOLO are 92.6%, 89.6%, and 92.1%. In the meantime, the Improved YOLO algorithm achieves a frame rate of 45 f/s, satisfying the real-time detection requirements. It is 3.2%, 2.7%, and 4.6% higher than the precision, recall, and mAP of YOLOv7, respectively. The accuracy of this model for detecting flowers and fruits was 93.9% and 91.3%, the recall was 93% and 86.3%, and the average precision was 94.7% and 89.5%, respectively. The Improved YOLO algorithm has a high level of robustness and real-time detection performance, allowing it to quickly and accurately identify the flowers and fruits of strawberry seedlings and provides effective support for the automated management of flower and fruit thinning of strawberry seedlings in greenhouse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
00完成签到 ,获得积分10
1秒前
忧伤的觅珍完成签到,获得积分10
1秒前
sherry221完成签到,获得积分10
2秒前
肆陆发布了新的文献求助10
3秒前
hawaii66完成签到 ,获得积分10
3秒前
梅倪完成签到,获得积分10
4秒前
小背包完成签到 ,获得积分10
5秒前
Leo完成签到,获得积分10
5秒前
5秒前
Katyusha完成签到 ,获得积分10
7秒前
与一完成签到 ,获得积分10
7秒前
完美世界应助Sun采纳,获得10
8秒前
emma完成签到,获得积分10
8秒前
fhw完成签到 ,获得积分10
9秒前
平蕉完成签到,获得积分10
11秒前
Lee发布了新的文献求助10
11秒前
fx完成签到,获得积分10
12秒前
小斌完成签到,获得积分10
12秒前
12秒前
风格完成签到,获得积分10
12秒前
尊敬怀薇完成签到,获得积分10
17秒前
bliyaa发布了新的文献求助10
17秒前
乐正追命完成签到,获得积分10
17秒前
ran完成签到 ,获得积分10
18秒前
想要每天睡到自然醒完成签到,获得积分10
20秒前
21秒前
22秒前
shadow完成签到,获得积分10
23秒前
JXDYYZK完成签到,获得积分10
24秒前
Jasper应助乐哉采纳,获得10
24秒前
付强发布了新的文献求助10
25秒前
专注鸡完成签到,获得积分10
25秒前
左一酱完成签到 ,获得积分10
26秒前
bliyaa完成签到,获得积分20
26秒前
图图发布了新的文献求助10
27秒前
28秒前
yyy驳回了陈炫铭应助
28秒前
leena完成签到 ,获得积分10
28秒前
戚雅柔完成签到 ,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792652
求助须知:如何正确求助?哪些是违规求助? 3336874
关于积分的说明 10282421
捐赠科研通 3053766
什么是DOI,文献DOI怎么找? 1675684
邀请新用户注册赠送积分活动 803701
科研通“疑难数据库(出版商)”最低求助积分说明 761510