Occlusion-aware Unsupervised Light Field Depth Estimation based on Muti-Scale GANs

人工智能 计算机科学 鉴别器 光场 深度学习 模式识别(心理学) 无监督学习 卷积神经网络 领域(数学) 特征学习 计算机视觉 数学 电信 探测器 纯数学
作者
Wenbin Yan,Xiaogang Zhang,Hua Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 6318-6333 被引量:2
标识
DOI:10.1109/tcsvt.2024.3359661
摘要

The estimation of depth from 4D light field images is a fundamental problem for perceiving and reconstructing environmental scenes. While learning-based methods have achieved remarkable results in this field, most of them rely on supervised learning, which faces significant challenges in real-world applications due to the lack of sufficient available ground truth depth maps. In this paper, we propose an unsupervised learning architecture based on a generative adversarial learning model for light field image depth estimation(OALFGAN). Specifically, our approach involves a multi-scale deep convolutional generative adversarial network learning system that includes a sparse-to-dense cascaded multi-scale generator and a discriminator, which decomposes the problem of generating high-quality images into more manageable sub-problems. To address the issue of violations of photometric consistency that may be caused by occlusion, we introduce a spatial-angular attention module that adaptively extracts view features with fewer occlusions and richer textures to generate more accurate disparity maps. Furthermore, we design a loss function that incorporates adaptive angular entropy consistency, symmetry loss, and edge-aware loss based on the distribution regularity and self-constraint of light field images to further optimize occlusion and disparity discontinuity issues and improve the reliability of the final depth prediction. Our proposed method demonstrates superior performance over existing methods on synthetic datasets, both quantitatively and qualitatively. Moreover, our proposed method exhibits excellent generalization performance on real-world datasets, demonstrating the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助liii采纳,获得10
刚刚
2秒前
2秒前
huzilu完成签到,获得积分10
3秒前
3秒前
李健的小迷弟应助板栗鸡采纳,获得10
3秒前
caojiarong完成签到,获得积分10
3秒前
是一个小朋友完成签到,获得积分10
5秒前
lily336699完成签到,获得积分10
5秒前
芒晨牧微完成签到,获得积分10
5秒前
拿捏陕科大完成签到,获得积分10
7秒前
未来可期发布了新的文献求助10
7秒前
聪慧芷巧发布了新的文献求助10
8秒前
9秒前
9秒前
愉快的夜云完成签到,获得积分10
12秒前
12秒前
Ffegrbgbsssgr发布了新的文献求助10
12秒前
从容曼文完成签到,获得积分10
13秒前
14秒前
板栗鸡发布了新的文献求助10
16秒前
情怀应助阿衡采纳,获得10
17秒前
17秒前
从容曼文发布了新的文献求助10
18秒前
18秒前
Ffegrbgbsssgr完成签到,获得积分20
18秒前
20秒前
caojiarong发布了新的文献求助10
20秒前
cmt发布了新的文献求助10
21秒前
彪行天下发布了新的文献求助30
21秒前
现代的雪糕完成签到,获得积分10
23秒前
单薄店员发布了新的文献求助10
23秒前
ljw199606完成签到,获得积分10
24秒前
酷酷小子发布了新的文献求助10
25秒前
25秒前
Ava应助自然归尘采纳,获得10
26秒前
26秒前
板栗鸡完成签到,获得积分10
26秒前
仙人掌发布了新的文献求助10
32秒前
alwry完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923360
求助须知:如何正确求助?哪些是违规求助? 3468223
关于积分的说明 10951106
捐赠科研通 3197262
什么是DOI,文献DOI怎么找? 1766485
邀请新用户注册赠送积分活动 856265
科研通“疑难数据库(出版商)”最低求助积分说明 795378