Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis

医学 乳腺癌 可解释性 放射科 肿瘤科 人工智能 内科学 癌症 计算机科学
作者
Yao Huang,Xiaoxia Wang,Ying Cao,Mengfei Li,Lan Li,Huifang Chen,Sun Tang,Xiaosong Lan,Fujie Jiang,Jiuquan Zhang
出处
期刊:Diagnostic and interventional imaging [Elsevier BV]
卷期号:105 (5): 191-205 被引量:8
标识
DOI:10.1016/j.diii.2024.01.004
摘要

The purpose of this study was to assess the predictive performance of multiparametric magnetic resonance imaging (MRI) for molecular subtypes and interpret features using SHapley Additive exPlanations (SHAP) analysis. Patients with breast cancer who underwent pre-treatment MRI (including ultrafast dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, diffusion kurtosis imaging and intravoxel incoherent motion) were recruited between February 2019 and January 2022. Thirteen semantic and thirteen multiparametric features were collected and the key features were selected to develop machine-learning models for predicting molecular subtypes of breast cancers (luminal A, luminal B, triple-negative and HER2-enriched) by using stepwise logistic regression. Semantic model and multiparametric model were built and compared based on five machine-learning classifiers. Model decision-making was interpreted using SHAP analysis. A total of 188 women (mean age, 53 ± 11 [standard deviation] years; age range: 25–75 years) were enrolled and further divided into training cohort (131 women) and validation cohort (57 women). XGBoost demonstrated good predictive performance among five machine-learning classifiers. Within the validation cohort, the areas under the receiver operating characteristic curves (AUCs) for the semantic models ranged from 0.693 (95% confidence interval [CI]: 0.478–0.839) for HER2-enriched subtype to 0.764 (95% CI: 0.681–0.908) for luminal A subtype, inferior to multiparametric models that yielded AUCs ranging from 0.771 (95% CI: 0.630–0.888) for HER2-enriched subtype to 0.857 (95% CI: 0.717–0.957) for triple-negative subtype. The AUCs between the semantic and the multiparametric models did not show significant differences (P range: 0.217–0.640). SHAP analysis revealed that lower iAUC, higher kurtosis, lower D*, and lower kurtosis were distinctive features for luminal A, luminal B, triple-negative breast cancer, and HER2-enriched subtypes, respectively. Multiparametric MRI is superior to semantic models to effectively predict the molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Watsun采纳,获得30
刚刚
王王完成签到 ,获得积分10
刚刚
小高同学发布了新的文献求助10
刚刚
3秒前
maclogos发布了新的文献求助10
3秒前
7秒前
8秒前
安详草莓发布了新的文献求助30
8秒前
9秒前
xiaojiesi完成签到,获得积分20
9秒前
伶俐的星月完成签到,获得积分10
10秒前
10秒前
左岸完成签到 ,获得积分10
11秒前
13秒前
xiaojiesi发布了新的文献求助30
14秒前
Watsun发布了新的文献求助30
14秒前
Zhidong Wei完成签到,获得积分10
14秒前
15秒前
Elige发布了新的文献求助10
15秒前
zilhua发布了新的文献求助10
20秒前
忐忑的黑猫应助扒开皮皮采纳,获得10
20秒前
mcl完成签到,获得积分10
23秒前
Elige完成签到,获得积分10
23秒前
今后应助大意的乐菱采纳,获得10
27秒前
pipi完成签到 ,获得积分10
29秒前
zilhua完成签到,获得积分10
29秒前
彩色向秋发布了新的文献求助10
30秒前
领导范儿应助TT采纳,获得10
32秒前
妙松完成签到,获得积分10
34秒前
香蕉觅云应助小高同学采纳,获得10
36秒前
bc应助bingche采纳,获得100
38秒前
38秒前
39秒前
陈雷应助科研通管家采纳,获得10
39秒前
Hello应助科研通管家采纳,获得10
40秒前
CWNU_HAN应助科研通管家采纳,获得30
40秒前
Akim应助科研通管家采纳,获得10
40秒前
汉堡包应助科研通管家采纳,获得10
40秒前
orixero应助科研通管家采纳,获得10
40秒前
田様应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339