Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis

医学 乳腺癌 可解释性 放射科 肿瘤科 人工智能 内科学 癌症 计算机科学
作者
Yao Huang,Xiaoxia Wang,Ying Cao,Mengfei Li,Lan Li,Huifang Chen,Sun Tang,Xiaosong Lan,Fujie Jiang,Jiuquan Zhang
出处
期刊:Diagnostic and interventional imaging [Elsevier BV]
卷期号:105 (5): 191-205 被引量:8
标识
DOI:10.1016/j.diii.2024.01.004
摘要

The purpose of this study was to assess the predictive performance of multiparametric magnetic resonance imaging (MRI) for molecular subtypes and interpret features using SHapley Additive exPlanations (SHAP) analysis. Patients with breast cancer who underwent pre-treatment MRI (including ultrafast dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, diffusion kurtosis imaging and intravoxel incoherent motion) were recruited between February 2019 and January 2022. Thirteen semantic and thirteen multiparametric features were collected and the key features were selected to develop machine-learning models for predicting molecular subtypes of breast cancers (luminal A, luminal B, triple-negative and HER2-enriched) by using stepwise logistic regression. Semantic model and multiparametric model were built and compared based on five machine-learning classifiers. Model decision-making was interpreted using SHAP analysis. A total of 188 women (mean age, 53 ± 11 [standard deviation] years; age range: 25–75 years) were enrolled and further divided into training cohort (131 women) and validation cohort (57 women). XGBoost demonstrated good predictive performance among five machine-learning classifiers. Within the validation cohort, the areas under the receiver operating characteristic curves (AUCs) for the semantic models ranged from 0.693 (95% confidence interval [CI]: 0.478–0.839) for HER2-enriched subtype to 0.764 (95% CI: 0.681–0.908) for luminal A subtype, inferior to multiparametric models that yielded AUCs ranging from 0.771 (95% CI: 0.630–0.888) for HER2-enriched subtype to 0.857 (95% CI: 0.717–0.957) for triple-negative subtype. The AUCs between the semantic and the multiparametric models did not show significant differences (P range: 0.217–0.640). SHAP analysis revealed that lower iAUC, higher kurtosis, lower D*, and lower kurtosis were distinctive features for luminal A, luminal B, triple-negative breast cancer, and HER2-enriched subtypes, respectively. Multiparametric MRI is superior to semantic models to effectively predict the molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助lp采纳,获得10
2秒前
4秒前
5秒前
猪猪hero发布了新的文献求助10
7秒前
豆花完成签到 ,获得积分10
7秒前
Estrella发布了新的文献求助30
8秒前
8秒前
林平之完成签到,获得积分10
8秒前
10秒前
Cwx2020发布了新的文献求助10
11秒前
13秒前
zwjy完成签到,获得积分10
13秒前
14秒前
无奈的醉薇完成签到,获得积分10
14秒前
15秒前
15秒前
阿呆桃桃完成签到 ,获得积分10
16秒前
lp发布了新的文献求助10
16秒前
雪山飞鹰完成签到,获得积分10
16秒前
Lrfc完成签到 ,获得积分20
17秒前
想人陪的飞薇完成签到 ,获得积分10
18秒前
希望天下0贩的0应助邹丹采纳,获得10
19秒前
雪山飞鹰发布了新的文献求助10
19秒前
风评完成签到,获得积分10
20秒前
科目三应助。。。采纳,获得10
20秒前
鸣笛应助小盘子采纳,获得30
21秒前
LSH970829发布了新的文献求助10
21秒前
柚子完成签到,获得积分10
21秒前
21秒前
王木木完成签到,获得积分10
21秒前
lp完成签到,获得积分10
22秒前
23秒前
23秒前
彭于晏应助雪山飞鹰采纳,获得10
24秒前
xixi很困发布了新的文献求助10
25秒前
饱满黎昕完成签到,获得积分20
27秒前
28秒前
迅速的小鸽子完成签到 ,获得积分10
28秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Evaluating and predicting disease damage accumulation of IgG4-RD over ten years: utility of the IgG4-related Disease Damage Index 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122938
求助须知:如何正确求助?哪些是违规求助? 3660909
关于积分的说明 11587565
捐赠科研通 3361906
什么是DOI,文献DOI怎么找? 1847321
邀请新用户注册赠送积分活动 911733
科研通“疑难数据库(出版商)”最低求助积分说明 827612