Electronic properties and modulation effects on edge-modified GeS<sub>2</sub> nanoribbons

材料科学 GSM演进的增强数据速率 调制(音乐) 光电子学 物理 电信 计算机科学 声学
作者
Jinghui Li,Shengguo Cao,Jia-Ning Han,Zhanhai Li,Zhenhua Zhang
出处
期刊:Chinese Physics [Science Press]
卷期号:73 (5): 056102-056102
标识
DOI:10.7498/aps.73.20231670
摘要

GeS<sub>2</sub> monolayers have been successfully prepared in this work. To further expand their applications and discover new physical properties, we construct armchair-type GeS<sub>2</sub> nanoribbons (AGeS<sub>2</sub>NR) and use different concentrations of H and O atoms for the edge modificationand their structural stabilities, electronic properties, carrier mobilities, and physical field modulation effects are studied in depth. The results show that the edge-modified nanoribbon has a higher energy and thermal stability. The bare edge nanoribbon is a nonmagnetic semiconductor, while the edge modification can change the bandgap of AGeS<sub>2</sub>NR and make it a wide or narrowed bandgap semiconductor, or a metal, which is closely related to the elimination or partial elimination of the edge states or the creation of hybridization bands. Thus edge modification extends the application range of nanoribbons in the fields of electronic devices and optical devices. In addition, the carrier mobility is found to be very sensitive to the edge modification: the carriers’ (electrons’ and holes’) mobilities of nanoribbons can be adjusted to a difference of up to one order of magnitude, and the difference in carrier mobility polarization can be tuned to one order of magnitude. Strain effect studies reveal that the semiconducting nanoribbons are robust in keeping the electronic phase unchanged over a wide strain range, which is useful for maintaining the stability of the electron transport in the related device. Most of the semiconducting nanoribbons have the stability to keep the semiconducting properties unchanged under high external electric field, but the bandgap can be reduced significantly with the increase of the electric field. In short, this study provides a theoretical analysis and reference for understanding the property of GeS<sub>2</sub> nanoribbons and developing related devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
55发布了新的文献求助10
1秒前
luoshi94完成签到,获得积分10
2秒前
IDHNAPHO发布了新的文献求助10
5秒前
CC完成签到,获得积分10
5秒前
6秒前
逍遥解牛发布了新的文献求助10
7秒前
jerry完成签到,获得积分10
7秒前
Xnnnnnn完成签到,获得积分10
7秒前
7秒前
自由如风完成签到 ,获得积分10
8秒前
9秒前
星辰大海应助七毛采纳,获得10
9秒前
9秒前
CAOHOU应助唯一采纳,获得10
9秒前
jackhlj发布了新的文献求助10
10秒前
沉静的时光完成签到 ,获得积分10
11秒前
11秒前
Aura完成签到,获得积分10
12秒前
12秒前
怕黑凝海发布了新的文献求助20
13秒前
13秒前
manman发布了新的文献求助10
13秒前
科研通AI5应助nnnnnjk采纳,获得10
13秒前
黄雪峰发布了新的文献求助20
13秒前
研友_VZG7GZ应助YUYU采纳,获得10
14秒前
勤恳数据线完成签到,获得积分10
14秒前
冷艳铁身发布了新的文献求助10
14秒前
14秒前
15秒前
向北游完成签到,获得积分10
15秒前
小蘑菇应助agou采纳,获得10
16秒前
16秒前
55完成签到,获得积分10
17秒前
逍遥解牛完成签到,获得积分10
18秒前
科研通AI6应助稳重雁易采纳,获得10
18秒前
Liury完成签到 ,获得积分10
18秒前
21秒前
ew完成签到,获得积分10
21秒前
积极三毒发布了新的文献求助10
22秒前
烟花应助满意的天采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Advances in Motivation Science 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550741
求助须知:如何正确求助?哪些是违规求助? 3980647
关于积分的说明 12324233
捐赠科研通 3649775
什么是DOI,文献DOI怎么找? 2010153
邀请新用户注册赠送积分活动 1045469
科研通“疑难数据库(出版商)”最低求助积分说明 933935