Pre‐endcapping of Hyperbranched Polymers toward Intrinsically Stretchable Semiconductors with Good Ductility and Carrier Mobility

材料科学 聚合物 纳米技术 半导体 延展性(地球科学) 高分子科学 复合材料 光电子学 蠕动
作者
Zhaoqiong Zhou,Nan Luo,Tianqiang Cui,Liang Luo,Mingrui Pu,Ying Wang,Feng He,Chunyang Jia,Xiangfeng Shao,Hao‐Li Zhang,Zitong Liu
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202313312
摘要

Abstract The advancement of semiconducting polymers stands as a pivotal milestone in the quest to realize wearable electronics. Nonetheless, endowing semiconductor polymers with stretchability without compromising their carrier mobility remains a formidable challenge. This study proposes a “pre‐endcapping” strategy for synthesizing hyperbranched semiconducting polymers ( HBSP s), aiming to achieve the balance between carrier mobility and stretchability for organic electronics. The findings unveil that the aggregates formed by the endcapped hyperbranched network structure not only ensure efficient charge transport, but also demonstrate superior tensile resistance. In comparison to linear conjugated polymers, HBSP s exhibit substantially larger crack onset strains and notably diminished tensile moduli. It is evident that the HBSP s surpass their linear counterparts in terms of both their semiconducting and mechanical properties. Among HBSP s, HBSP‐72h‐2.5 stands out as the preeminent candidate within the field of inherently stretchable semiconducting polymers, maintaining 93% of its initial mobility even when subjected to 100% strain (1.41±0.206 cm 2 V −1 s −1 ). Furthermore, thin film devices of HBSP‐72h‐2.5 remain stable after undergoing repeated stretching and releasing cycles. Notably, the mobilities are independent of the stretching directions, showing isotropic charge transport behavior. The preliminary study makes this “pre‐endcapping” strategy a potential candidate for future design of organic materials for flexible electronic devices. This article is protected by copyright. All rights reserved
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
海砂应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
maox1aoxin应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
1秒前
glaciersu应助科研通管家采纳,获得10
2秒前
张泽崇应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
张张孟孟完成签到,获得积分10
2秒前
橙子发布了新的文献求助10
2秒前
3秒前
xing完成签到,获得积分10
5秒前
可爱半凡发布了新的文献求助10
7秒前
热忱未减完成签到,获得积分10
8秒前
烟花应助夏侯夏侯采纳,获得10
16秒前
Orange应助啊南采纳,获得10
17秒前
i学习完成签到,获得积分10
18秒前
19秒前
开朗熊猫完成签到,获得积分10
19秒前
充电宝应助卜凡采纳,获得10
19秒前
领导范儿应助WANG采纳,获得10
20秒前
活在当下完成签到,获得积分10
21秒前
共享精神应助huaishang采纳,获得10
22秒前
ZLY完成签到 ,获得积分10
23秒前
俊逸书琴完成签到 ,获得积分10
25秒前
25秒前
小鱼要变咸完成签到,获得积分10
26秒前
啊南完成签到,获得积分20
28秒前
唐横完成签到,获得积分10
28秒前
遗迹小白完成签到,获得积分10
28秒前
搜集达人应助洋子采纳,获得10
30秒前
Joins_Su完成签到 ,获得积分10
30秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2392328
求助须知:如何正确求助?哪些是违规求助? 2096863
关于积分的说明 5283151
捐赠科研通 1824481
什么是DOI,文献DOI怎么找? 909913
版权声明 559923
科研通“疑难数据库(出版商)”最低求助积分说明 486236