Convolutional LSTM-Attention Based Encoder–Decoder Neural Network for Prediction of Chaotic Vibrations of Multi-Dimensional Dynamic Systems

计算机科学 混乱的 一般化 编码器 解码方法 卷积神经网络 人工智能 残余物 趋同(经济学) 人工神经网络 模式识别(心理学) 算法 数学 数学分析 操作系统 经济 经济增长
作者
Luyao Wang,Liming Dai,Haixing Zhao,Pan Fang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:24 (20)
标识
DOI:10.1142/s0219455424502274
摘要

The present research proposes a convolutional long-short term memory (ConvLSTM) with an attention mechanism (AM) model, termed as ConvLSTM-AM, to conduct prediction of chaotic vibrations of multi-dimensional dynamic systems. The proposed data-driven model is based on an encoder–decoder architecture where the lengths of inputs and outputs are variable. Different from other conventional benchmarks which consider the temporal correlation solely to deal with the chaotic sequences, this research work takes the spatial information into account. In this sense, the ConvLSTM is adopted as an encoder to acquire useful chaotic spatiotemporal patterns and retain long-term successive dependencies. LSTM and AM in this research are taken as the main structures of the procedure in decoding, in which the LSTM is used as the further temporal processor and AM is stacked on the top to exploit more salient information of the historical data. Among that, a residual connection between the outputs of LSTM and the information of attention is considered in AM to prevent gradient vanishment. Two datasets of chaotic vibrations of multi-dimensional systems are employed to adequately illustrate the effectiveness and feasibility of the proposed model. Besides, five conventional benchmarks are built to demonstrate the advantages of the proposed model in terms of both training and generalization performance. As found in the research, the training time is reduced with lower testing loss in comparing with the other five counterparts, as the spatial information introduced expedites the training convergence. The present research provides a useful guidance for predicting and analysing chaotic vibrations of multi-dimensional dynamic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王中秀完成签到,获得积分10
刚刚
刚刚
刚刚
汉堡包应助HHH采纳,获得30
刚刚
刚刚
1秒前
斌糖排骨完成签到,获得积分10
1秒前
returno_0完成签到 ,获得积分10
1秒前
有有完成签到 ,获得积分10
2秒前
俊逸香岚发布了新的文献求助10
2秒前
2秒前
李尚洁发布了新的文献求助10
2秒前
流光发布了新的文献求助10
2秒前
3秒前
3秒前
小巧的昊强完成签到,获得积分10
4秒前
4秒前
Kansny发布了新的文献求助10
5秒前
LXY天天关注了科研通微信公众号
5秒前
5秒前
MJJ完成签到,获得积分20
6秒前
6秒前
6秒前
简历发布了新的文献求助10
6秒前
情怀应助章鱼哥采纳,获得10
6秒前
lfc发布了新的文献求助10
6秒前
吕金泷完成签到,获得积分10
6秒前
7秒前
微笑的雁菱完成签到,获得积分10
7秒前
帅气天荷完成签到 ,获得积分10
7秒前
麦旋风发布了新的文献求助10
7秒前
8秒前
claire完成签到,获得积分20
8秒前
李健应助mdjinij采纳,获得10
8秒前
9秒前
打打应助一只咩采纳,获得10
9秒前
shijie发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
魔法签证1993完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710639
求助须知:如何正确求助?哪些是违规求助? 5200300
关于积分的说明 15261682
捐赠科研通 4863272
什么是DOI,文献DOI怎么找? 2610500
邀请新用户注册赠送积分活动 1560823
关于科研通互助平台的介绍 1518430