Combining artificial neural network classification with fully continuous probabilistic genotyping to remove the need for an analytical threshold and electropherogram reading

电泳图谱 计算机科学 人工神经网络 人工智能 概率逻辑 模式识别(心理学) 机器学习 自然语言处理 毛细管电泳 化学 色谱法
作者
Duncan Taylor,John Buckleton
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:62: 102787-102787 被引量:3
标识
DOI:10.1016/j.fsigen.2022.102787
摘要

Standard processing of electrophoretic data within a forensic DNA laboratory is for one (or two) analysts to designate peaks as either artefactual or non-artefactual in a process commonly referred to as profile 'reading'. Recently, FaSTR™ DNA has been developed to use artificial neural networks to automatically classify fluorescence within an electropherogram as baseline, allele, stutter or pull-up. These classifications are based on probabilities assigned to each timepoint (scan) within the electropherogram. Instead of using the probabilities to assign fluorescence into a category they can be used directly in the profile analysis. This has a number of advantages; increased objectivity in DNA profile processing, the removal for the need for analysts to read profiles, the removal for the need of an analytical threshold. Models within STRmix™ were extended to incorporate the peak label probabilities assigned by FaSTR™ DNA. The performance of the model extensions was tested on a DNA mixture dataset, comprising 2-4 person samples. This dataset was processed in a 'standard' manner using an analytical threshold of 50rfu, analyst peak designations and STRmix™ V2.9 models. The same dataset was then processed in an automated manner using no analytical threshold, no analysts reading the profile and using the STRmix™ models extended to incorporate peak label probabilities. Both datasets were compared to the known DNA donors and a set of non-donors. The result between the two processes was a very close performance, but with a large efficiency gain in the 0rfu process. Utilising peak label probabilities opens up the possibility for a range of workflow process efficiency gains, but beyond this allows full use of all data within an electropherogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致荔枝完成签到,获得积分10
2秒前
义气谷兰完成签到 ,获得积分10
5秒前
桐桐完成签到,获得积分0
5秒前
suiting完成签到,获得积分10
10秒前
艳子发布了新的文献求助10
12秒前
研友_VZG7GZ应助lulu采纳,获得10
13秒前
不倦应助suiting采纳,获得10
13秒前
17秒前
郭宇完成签到,获得积分20
17秒前
酷波er应助快乐的90后fjk采纳,获得10
20秒前
xliiii完成签到,获得积分10
20秒前
21秒前
璐宝完成签到,获得积分10
23秒前
落后月亮发布了新的文献求助10
23秒前
23秒前
lulu发布了新的文献求助10
24秒前
Jasper应助梅子酒采纳,获得10
26秒前
binz完成签到,获得积分10
26秒前
nesire发布了新的文献求助10
29秒前
个性松完成签到 ,获得积分10
32秒前
39秒前
隐形曼青应助nesire采纳,获得10
40秒前
43秒前
43秒前
serenity711完成签到 ,获得积分10
43秒前
uouuo完成签到 ,获得积分10
44秒前
leungya完成签到,获得积分10
46秒前
脑洞疼应助知了采纳,获得10
47秒前
科研小白发布了新的文献求助10
48秒前
梅子酒发布了新的文献求助10
49秒前
下论文完成签到,获得积分10
52秒前
wanci应助科研通管家采纳,获得10
57秒前
所所应助科研通管家采纳,获得10
57秒前
57秒前
科研通AI5应助科研通管家采纳,获得10
57秒前
Hello应助科研通管家采纳,获得10
57秒前
田様应助科研通管家采纳,获得10
57秒前
57秒前
科研通AI5应助科研通管家采纳,获得10
57秒前
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321968
关于积分的说明 10208252
捐赠科研通 3037252
什么是DOI,文献DOI怎么找? 1666613
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872