A recommendation system for effective learning strategies: An integrated approach using context-dependent DEA

计算机科学 背景(考古学) 数据包络分析 聚类分析 透视图(图形) 机器学习 人工智能 知识管理 数学 生物 数学优化 古生物学
作者
Lu Zhao,Dai-Song Wang,Feng-Yun Liang,Jian Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:211: 118535-118535 被引量:3
标识
DOI:10.1016/j.eswa.2022.118535
摘要

Universities have been focusing on increasing individualized training and providing appropriate education for students. The individual differences and learning needs of college students should be given enough attention. From the perspective of learning efficiency, we establish a clustering hierarchical progressive improvement model (CHPI), which is based on cluster analysis and context-dependent data envelopment analysis (DEA) methods. The CHPI clusters students' ontological features, employs the context-dependent DEA method to stratify students of different classes, and calculates measures, such as obstacles, to determine the reference path for individuals with inefficient learning processes. The learning strategies are determined according to the gap between the inefficient individual to be improved and the individuals on the reference path. By the study of college English courses as an example, it is found that the CHPI can accurately recommend targeted learning strategies to satisfy the individual needs of college students so that the learning of individuals with inefficient learning processes in a certain stage can be effectively improved. In addition, CHPI can provide specific, efficient suggestions to improve learning efficiency comparing to existing recommendation systems, and has great potential in promoting the integration of education-related researches and expert systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
满意幼枫发布了新的文献求助10
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
3秒前
不渝完成签到,获得积分10
3秒前
3秒前
脑洞疼应助冷静的钢笔采纳,获得10
4秒前
动听千山发布了新的文献求助10
4秒前
orixero应助舒适路人采纳,获得10
5秒前
明亮不乐完成签到,获得积分10
5秒前
三国时代发布了新的文献求助10
6秒前
公子商完成签到 ,获得积分10
9秒前
CodeCraft应助沉默的1111采纳,获得10
10秒前
遇上就这样吧应助Dr大壮采纳,获得30
11秒前
南冥完成签到 ,获得积分10
11秒前
傅剑完成签到,获得积分10
13秒前
JUNJIU完成签到,获得积分10
13秒前
14秒前
田様应助玛卡巴卡采纳,获得10
15秒前
所所应助皮老师采纳,获得10
17秒前
小蘑菇应助光亮小蚂蚁采纳,获得10
18秒前
18秒前
18秒前
lohome发布了新的文献求助30
19秒前
烟花应助无心的土豆采纳,获得10
19秒前
小蘑菇应助fan采纳,获得10
20秒前
研友_LpQGjn完成签到 ,获得积分10
20秒前
领导范儿应助舒适路人采纳,获得10
21秒前
张光光发布了新的文献求助10
21秒前
21秒前
22秒前
荔枝发布了新的文献求助10
23秒前
25秒前
张哈哈发布了新的文献求助10
26秒前
现实的盼秋完成签到,获得积分10
27秒前
27秒前
出门见喜发布了新的文献求助10
29秒前
小硕完成签到,获得积分10
29秒前
hhh发布了新的文献求助10
30秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784436
求助须知:如何正确求助?哪些是违规求助? 3329565
关于积分的说明 10242565
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671494
邀请新用户注册赠送积分活动 800371
科研通“疑难数据库(出版商)”最低求助积分说明 759391