How Well Can We Predict Mass Spectra from Structures? Benchmarking Competitive Fragmentation Modeling for Metabolite Identification on Untrained Tandem Mass Spectra

轨道轨道 碎片(计算) 质谱 化学 串联 谱线 碰撞 质谱法 计算机科学 人工智能 串联质谱法 试验装置 生物系统 色谱法 物理 材料科学 生物 操作系统 复合材料 计算机安全 天文
作者
Parker Ladd Bremer,Arpana Vaniya,Tobias Kind,Shunyang Wang,Oliver Fiehn
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (17): 4049-4056 被引量:12
标识
DOI:10.1021/acs.jcim.2c00936
摘要

Competitive Fragmentation Modeling for Metabolite Identification (CFM-ID) is a machine learning tool to predict in silico tandem mass spectra (MS/MS) for known or suspected metabolites for which chemical reference standards are not available. As a machine learning tool, it relies on both an underlying statistical model and an explicit training set that encompasses experimental mass spectra for specific compounds. Such mass spectra depend on specific parameters such as collision energies, instrument types, and adducts which are accumulated in libraries. Yet, ultimately prediction tools that are meant to cover wide expanses of entities must be validated on cases that were not included in the initial training and testing sets. Hence, we here benchmarked the performance of CFM-ID 4.0 to correctly predict MS/MS spectra for spectra that were not included in the CFM-ID training set and for different mass spectrometry conditions. We used 609,456 experimental tandem spectra from the NIST20 mass spectral library that were newly added to the previous NIST17 library version. We found that CFM-ID's highest energy prediction output would maximize the capacity for library generation. Matching the experimental collision energy with CFM-ID's prediction energy produced the best results, even for HCD-Orbitrap instruments. For benzenoids, better MS/MS predictions were achieved than for heterocyclic compounds. However, when exploring CFM-ID's performance on 8,305 compounds at 40 eV HCD-Orbitrap collision energy, >90% of the 20/80 split test compounds showed <700 MS/MS similarity score. Instead of a stand-alone tool, CFM-ID 4.0 might be useful to boost candidate structures in the greater context of identification workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Zjjj0812采纳,获得10
1秒前
2秒前
ED应助8787采纳,获得10
2秒前
小二郎应助LiuJ采纳,获得10
3秒前
不想干活应助笨笨的元绿采纳,获得20
5秒前
6秒前
7秒前
天天快乐应助独钓寒江雪采纳,获得10
7秒前
8秒前
娄善昱完成签到,获得积分10
8秒前
id完成签到,获得积分10
9秒前
激昂的南晴完成签到 ,获得积分10
10秒前
cccool发布了新的文献求助10
11秒前
14秒前
15秒前
彭于晏应助Wendy采纳,获得10
16秒前
学无止境完成签到,获得积分10
17秒前
xuan2022完成签到,获得积分10
17秒前
18秒前
18秒前
臧晓蕾发布了新的文献求助30
18秒前
mg应助逃亡的小狗采纳,获得10
19秒前
科研通AI2S应助憨憨的小于采纳,获得10
21秒前
21秒前
21秒前
xuan2022发布了新的文献求助10
22秒前
23秒前
媛57发布了新的文献求助10
24秒前
cccool完成签到,获得积分10
25秒前
25秒前
忧心的笑南完成签到,获得积分10
25秒前
动听千风完成签到,获得积分10
26秒前
27秒前
科研通AI5应助赛猪采纳,获得10
27秒前
28秒前
shinn发布了新的文献求助10
28秒前
31秒前
32秒前
Akim应助shinn采纳,获得10
33秒前
九日完成签到,获得积分10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171255
求助须知:如何正确求助?哪些是违规求助? 3706787
关于积分的说明 11695347
捐赠科研通 3392485
什么是DOI,文献DOI怎么找? 1860738
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832740