Retinal Structure Detection in OCTA Image via Voting-Based Multitask Learning

计算机科学 人工智能 多任务学习 模式识别(心理学) 分割 计算机视觉 任务(项目管理) 编码器 特征提取 多数决原则 特征(语言学) 图像分割 哲学 操作系统 经济 管理 语言学
作者
Jinkui Hao,Ting Shen,Xueli Zhu,Yonghuai Liu,Ardhendu Behera,Dan Zhang,Bang Chen,Jiang Liu,Jiong Zhang,Yifan Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3969-3980 被引量:1
标识
DOI:10.1109/tmi.2022.3202183
摘要

Automated detection of retinal structures, such as retinal vessels (RV), the foveal avascular zone (FAZ), and retinal vascular junctions (RVJ), are of great importance for understanding diseases of the eye and clinical decision-making. In this paper, we propose a novel Voting-based Adaptive Feature Fusion multi-task network (VAFF-Net) for joint segmentation, detection, and classification of RV, FAZ, and RVJ in optical coherence tomography angiography (OCTA). A task-specific voting gate module is proposed to adaptively extract and fuse different features for specific tasks at two levels: features at different spatial positions from a single encoder, and features from multiple encoders. In particular, since the complexity of the microvasculature in OCTA images makes simultaneous precise localization and classification of retinal vascular junctions into bifurcation/crossing a challenging task, we specifically design a task head by combining the heatmap regression and grid classification. We take advantage of three different en face angiograms from various retinal layers, rather than following existing methods that use only a single en face. We carry out extensive experiments on three OCTA datasets acquired using different imaging devices, and the results demonstrate that the proposed method performs on the whole better than either the state-of-the-art single-purpose methods or existing multi-task learning solutions. We also demonstrate that our multi-task learning method generalizes across other imaging modalities, such as color fundus photography, and may potentially be used as a general multi-task learning tool. We also construct three datasets for multiple structure detection, and part of these datasets with the source code and evaluation benchmark have been released for public access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小明应助77采纳,获得10
刚刚
3秒前
4秒前
鲤鱼幻波发布了新的文献求助10
4秒前
4秒前
清爽沛槐应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
迷路雨寒应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
小杭76应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
及禾应助科研通管家采纳,获得30
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
小杭76应助科研通管家采纳,获得10
7秒前
7秒前
胡三岁应助科研通管家采纳,获得10
8秒前
NIHAO发布了新的文献求助10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
changping应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
10秒前
tao发布了新的文献求助20
10秒前
momo完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
林炎完成签到,获得积分10
12秒前
zxd完成签到,获得积分10
14秒前
XCL发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299726
求助须知:如何正确求助?哪些是违规求助? 4447841
关于积分的说明 13843825
捐赠科研通 4333454
什么是DOI,文献DOI怎么找? 2378848
邀请新用户注册赠送积分活动 1374078
关于科研通互助平台的介绍 1339634